Free - damped vibrations, Mathematics

Assignment Help:

We are until now going to suppose that there will be no external forces acting on the system, along with the exception of damping obviously. Under this case the differential equation will be as

mu′′ + g u′ + ku = 0

Here m, g, and k are all positive constants. By solving this for the roots of the characteristic equation we determine the following,

r1,2 = (- g+√( g2 - 4mk))/2m

We will have three cases now.

1.      g2 - 4mk = 0

Under this case we will find a double root out of the characteristic equation and the displacement at any time t will be as,

u(t) = c1e-((gt)/(2m)) = c2te-((gt)/(2m))

Make sure that as t → ∞ the displacement will approach zero and therefore the damping under this case will do what it's supposed to do.

This case is termed as critical damping and will occur when the damping coefficient is,

g2 - 4mk = 0

g2 = 4mk

g = 2√(mk) = gCR

The value of the damping coefficient that gives critical damping is called the critical damping coefficient and denoted by ?CR.

2.      g2 - 4mk > 0

Under this case let's rewrite the roots a little.

860_Free - Damped Vibrations.png

Also see that from our initial assumption which we have,

g2 > 4 mk

1 > (4mk)/ g2

By using this we can notice that the fraction in the square root above is less than one. So if the quantity under the square root is less than one, it implies that the square root of this quantity is also going to be less than one. Conversely,

√(1 - (4mk)/ g2) < 1

Why is this significant? Well, the quantity in the parenthesis is now one minus/plus a number which is less than one. It means that the quantity in the parenthesis is guaranteed to be positive and therefore the two roots under this case are guaranteed to be negative.  Thus the displacement at any time t is,

1908_Free - Damped Vibrations1.png

And will approach zero as t → ∞. Therefore, once again the damper does what this is supposed to do.

This case will arise when,

g2 > 4mk

g2  > 2√(mk)

g > gCR

And this is termed as over damping.

3.      g 2 - 4mk < 0

Under this case we will find complex roots out of the characteristic equation.

2128_Free - Damped Vibrations2.png

Here the real part is guaranteed to be negative and therefore the displacement is as

U(t) = c1elt cos(µt) + c2 elt sin(µt)

= elt (c1 cos(µt) + c2 sin(µt))

= R elt(cos(ut - d))

Make sure that we reduced the sine and cosine down to a single cosine under this case as we did in the undamped case.  Also, as l < 0 the displacement will move toward zero as t → ∞ and the damper will also work as it's assumed to in this case.

 We will find this case will arise when,

g2 < 4mk

g2  < 2√(mk)

g < gCR

This is termed as under damping.


Related Discussions:- Free - damped vibrations

Trigonometric ratios, to difine trigonometric ratios of an angle,is it nece...

to difine trigonometric ratios of an angle,is it necessary that the initial ray of the angle must be positive x-axis?

Trigonometry, If tanA+sinA=m and m2-n2 = 4vmn, show that tanA-sinA=n

If tanA+sinA=m and m2-n2 = 4vmn, show that tanA-sinA=n

Pearson sucess, do you have a decimal place value chart

do you have a decimal place value chart

Ratio-categories of situations requiring division , Ratio - situations in ...

Ratio - situations in which we need to compare two quantities in terms of their ratio. (e.g., if Munna weighs 40 Kg. and Munni weighs 50 Kg., find the ratio of their weights.)

Percents, If 2/3 of a number is 24 then 1/4 of a number is...

If 2/3 of a number is 24 then 1/4 of a number is...

Solve the radical form, Simplify following. Suppose that x, y, & z are posi...

Simplify following. Suppose that x, y, & z are positive.                      √ y 7 Solution In this case the exponent (7) is larger than the index (2) and thus the fir

Determine that the following series is convergent or diverge, Determine or ...

Determine or find out if the following series is convergent or divergent. Solution In this example the function we'll use is, f (x) = 1 / (x ln x) This function is

Probability, Mike sells on the average 15 newspapers per week (Monday – Fri...

Mike sells on the average 15 newspapers per week (Monday – Friday). Find the probability that 2.1 In a given week he will sell all the newspapers

Marketing research, project assignment of page no.19 question no.2

project assignment of page no.19 question no.2

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd