## Formal languages and grammar, Theory of Computation

Assignment Help:

The universe of strings is a very useful medium for the representation of information as long as there exists a function that provides the interpretation for the information carried by the strings. An interpretation is just the contrary of the mapping that a representation provides, that is, an interpretation is a function g from Σ* to D for some alphabet Σ and some set D. The string 111, for instance, can be interpreted as the number one hundred and eleven represented by a decimal string, as the number seven represented by a binary string, and as the number three represented by a unary string.

In general, if Σ is an alphabet and L is a subset of Σ*, then L is said to be a language over Σ, or simply a language if Σ is understood. Each element of L is said to be a sentence or a word or a stringof the language.

"Example- {0, 11, 001}, {ε, 10}, and {0, 1}* are subsets of {0, 1}*, and so they are languages over the alphabet {0, 1}.

The empty set Ø and the set {ε} are languages over every alphabet. Ø is a language that contains no string. {ε} is a language that contains just the empty string.

The union of two languages L1 and L2, denoted L1 U  L2, refers to the language that consists of all the strings that are either in L1 or in L2, that is, to { x | x is in L1 or x is in L2 }. The intersection of L1 and L2, denoted L1 ∩  L2, refers to the language that consists of all the strings that are both in L1 and L2, that is, to {x | x is in L1 and in L2}. The complementation of a language L over Σ, or just the complementation of L when Σ is understood, denoted L, refers to the language that consists of all the strings over Σ that are not in L, that is, to { x | x is in Σ* but not in L }".

A set of real values for a problem is called an instance of the problem. So a problem, specifies what an instance is, i.e., what is the input, problem, or output and how the solution is related to the input.

Rubber shortnote

#### Synthesis theorem, Kleene called this the Synthesis theorem because his (an...

Kleene called this the Synthesis theorem because his (and your) proof gives an effective procedure for synthesizing an automaton that recognizes the language denoted by any given r

#### Theory of computation, Computations are deliberate for processing informati...

Computations are deliberate for processing information. Computability theory was discovered in the 1930s, and extended in the 1950s and 1960s. Its basic ideas have become part of

Ask question #hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhMinimum 100 words accepted#

#### 4 bit digital comparator png, 4 bit digital comparator png

4 bit digital comparator png

#### Strictly 2 - local automata, We will assume that the string has been augmen...

We will assume that the string has been augmented by marking the beginning and the end with the symbols ‘?' and ‘?' respectively and that these symbols do not occur in the input al

#### Non deterministic finite state automaton, Automaton (NFA) (with ε-transitio...

Automaton (NFA) (with ε-transitions) is a 5-tuple: (Q,Σ, δ, q 0 , F i where Q, Σ, q 0 and F are as in a DFA and T ⊆ Q × Q × (Σ ∪ {ε}). We must also modify the de?nitions of th

turing machine

#### Pumping lemma constant, a) Let n be the pumping lemma constant. Then if L i...

a) Let n be the pumping lemma constant. Then if L is regular, PL implies that s can be decomposed into xyz, |y| > 0, |xy| ≤n, such that xy i z is in L for all i ≥0. Since the le

#### Operations on strictly local languages, The class of Strictly Local Languag...

The class of Strictly Local Languages (in general) is closed under • intersection but is not closed under • union • complement • concatenation • Kleene- and positive  