Formal languages and grammar, Theory of Computation

The universe of strings is a very useful medium for the representation of information as long as there exists a function that provides the interpretation for the information carried by the strings. An interpretation is just the contrary of the mapping that a representation provides, that is, an interpretation is a function g from Σ* to D for some alphabet Σ and some set D. The string 111, for instance, can be interpreted as the number one hundred and eleven represented by a decimal string, as the number seven represented by a binary string, and as the number three represented by a unary string.

In general, if Σ is an alphabet and L is a subset of Σ*, then L is said to be a language over Σ, or simply a language if Σ is understood. Each element of L is said to be a sentence or a word or a stringof the language.

"Example- {0, 11, 001}, {ε, 10}, and {0, 1}* are subsets of {0, 1}*, and so they are languages over the alphabet {0, 1}.

The empty set Ø and the set {ε} are languages over every alphabet. Ø is a language that contains no string. {ε} is a language that contains just the empty string.

The union of two languages L1 and L2, denoted L1 U  L2, refers to the language that consists of all the strings that are either in L1 or in L2, that is, to { x | x is in L1 or x is in L2 }. The intersection of L1 and L2, denoted L1 ∩  L2, refers to the language that consists of all the strings that are both in L1 and L2, that is, to {x | x is in L1 and in L2}. The complementation of a language L over Σ, or just the complementation of L when Σ is understood, denoted L, refers to the language that consists of all the strings over Σ that are not in L, that is, to { x | x is in Σ* but not in L }".

A set of real values for a problem is called an instance of the problem. So a problem, specifies what an instance is, i.e., what is the input, problem, or output and how the solution is related to the input.

Posted Date: 3/18/2013 1:09:01 AM | Location : United States

Related Discussions:- Formal languages and grammar, Assignment Help, Ask Question on Formal languages and grammar, Get Answer, Expert's Help, Formal languages and grammar Discussions

Write discussion on Formal languages and grammar
Your posts are moderated
Related Questions
Let L1 and L2 be CGF. We show that L1 ∩ L2 is CFG too. Let M1 be a decider for L1 and M2 be a decider for L2 . Consider a 2-tape TM M: "On input x: 1. copy x on the sec

proof ogdens lemma .with example i am not able to undestand the meaning of distinguished position .

As we are primarily concerned with questions of what is and what is not computable relative to some particular model of computation, we will usually base our explorations of langua

De?nition Instantaneous Description of an FSA: An instantaneous description (ID) of a FSA A = (Q,Σ, T, q 0 , F) is a pair (q,w) ∈ Q×Σ* , where q the current state and w is the p

The class of Strictly Local Languages (in general) is closed under • intersection but is not closed under • union • complement • concatenation • Kleene- and positive

The Recognition Problem for a class of languages is the question of whether a given string is a member of a given language. An instance consists of a string and a (?nite) speci?cat

The key thing about the Suffx Substitution Closure property is that it does not make any explicit reference to the automaton that recognizes the language. While the argument tha

Find the Regular Grammar for the following Regular Expression: a(a+b)*(ab*+ba*)b.