For elevated temperatures, other materials, Mechanical Engineering

For Elevated Temperatures, Other Materials

 High temperature creep is a significant phenomenon to be guarded in various machines like gas turbines, missiles, reentry vehicles and propulsion engines. Ferritic and another stainless steel are good against creep but merely to limited extent. Refractory metals and their alloys are beneath close investigation for this point. The goal is not still achieved and some developments are still proprietary. This will be worthwhile to note several developments that have previously taken place.

Iron base super alloys are austenitic stainless steel modification. They are yet proprietory and manufactured via only single company. Austenitic steel is additionally alloyed along with some additional metals to generate super alloys. These alloying elements comprise Cobalt, W, Mo, V, Nb, Ti, Al, Zr, B and Copper. These super alloys are strengthened via strain hardening or via precipitation hardening. Such alloys are often utilized in between 650oC and 760oC, the range whether strain hardening effects are retained since addition of alloying elements raising recrystallization temperature to 925oC. The precipitation hardening is achieved because of precipitation of carbides nitrides of hard particles or boride that are stable above 750oC and thus super alloys are conveniently utilized in the range of 650oC-750oC.

Co and Nickel based super alloys have most of iron replaced via Co or Ni. These alloys can be hardened also by precipitation hardening or strain hardening. During precipitation in large size particles as 0.5 µ diameter made up of Ni3, Al or Ni3 Ti or their mixture are precipitated that are stable up to extremely high temperature. The utilizable temperature limit of these alloys is as high as 925oC.

Dispersion hardened alloys acquire their high temperature strength form finely dispersed ultrafine ceramic particles in the matrix of Ni. T. D. Nickel along with fine thoria or ThO2 dispersed in the matrix is possibly the only instance of that type. The material is extremely hard at room temperature and can't be deformed plastically. Still, it is very costly.

Posted Date: 2/27/2013 1:57:19 AM | Location : United States







Related Discussions:- For elevated temperatures, other materials, Assignment Help, Ask Question on For elevated temperatures, other materials, Get Answer, Expert's Help, For elevated temperatures, other materials Discussions

Write discussion on For elevated temperatures, other materials
Your posts are moderated
Related Questions
Compressive Stress: The stress induced in a body, when subjected to two equal and opposite pushes as shown in figure (a) as a result of which there is an decrease in length

Draw neat diagram of aWankel engine and explain its working. Derive expressions for work done and efficiency for an Otto cycle. Illustrate with diagrams the several types of

what is boiler. give all things about boiler. 1 specifica 2 mounting 3 acessories 4 advantages 5 maintinance

Advantages of resistance welding   1. Resistance welding is very fast compared to arc welding. 2. Almost any combination of metals can be resistance welded provided necessa

(a) Show by use of Buckingham's Pi-Theorem that the velocity through an orifice is given by V = √2gH  f D/H , M/ΡVH , σ/ΡV 2 H . Where H is the head causing flow, D is the diame

write a VB programme that compute the binary ordering algorithm for unlimited number of machines and parts

break power of two stroke engine

Structural Steels Low alloy steels are utilized for structural causes. That type of steels is needed to possess high yield stress, excellent ductility and high fatigue resist

Two shafts A and B are co-axial. A gear C (50 teeth) is rigidly mounted on shaft A. A compound gear D-E gears with C and an internal gear G. D has 20 teeth and gears with C and E h

Dryness fraction measurement: Sensible Hea t of Water or Heat of Liquid or Enthalpy of Liquid (h) Sol.: It is quantity of heat which is required to raise unit mass