Factors affecting to high technical losses, Electrical Engineering

Factors Affecting to High Technical Losses

Large Scale Rural Electrification

Large scale rural electrification programmed undertaken in the country resulted in long LT lines and extension of distribution network. This was completed without strengthening the back up transmission and sub-transmission system. In practice, distribution lines were extended over long distances to feed loads scattered over large rural areas.  This has resulted in high line resistance and, thus, high I2R losses in the line.

Ad-hoc Expansion of the System without Scientific Planning

Distribution systems have been expanded on an adhoc and haphazard basis with the sole objective of giving connections without any scientific planning which has resulted in higher losses.

Too many Transformation Stages

In the Distribution system, the energy is transformed to several intermediate stages before it reaches the consumer. Too many transformation stages gives output in higher component of transformation losses.

Low Power Factor

Due to pumping load in rural areas, and air conditioners, coolers and industrial loads in urban areas, the system has a low power factor that results in higher losses. You know that for a given load, if the Power Factor is low, the current drawn is high. Accordingly, the losses proportional to the square of the current will be higher.

Improper Load Management

Improper management of the load has to be led to over-loading of conductors and transformers in the system causing higher losses.

Distribution Transformers not Located at Load Centre

Often DTRs are not located centrally along with respect to consumers. Thus, the whole length of the distribution network increases and the farthest consumers acquire an extremely low voltage even by a reasonably good voltage level is maintained at the transformers' secondaries. This again leads to higher line losses.

Low Quality of Equipment, Poor Construction and Inadequate Maintenance of Equipment

Poor quality of equipment results in increased technical losses. For instance, the distribution transformers are being manufactured along with scrap steel resulting in substantially higher losses in transformation to distribution voltage. Poor workmanship contributes extensively towards increasing distribution losses. Joints are a source of power loss. Connections to the transformer bushing-stem drop out fuse, isolator, and LT switch cause losses.  Therefore, poor construction results in increased losses. Poor workmanship leads to hot spots, equipment failure and interruption in supply. Deteriorated wires and services, that are not timely managed, cause leakages and loss of power.

Posted Date: 2/6/2013 4:59:22 AM | Location : United States







Related Discussions:- Factors affecting to high technical losses, Assignment Help, Ask Question on Factors affecting to high technical losses, Get Answer, Expert's Help, Factors affecting to high technical losses Discussions

Write discussion on Factors affecting to high technical losses
Your posts are moderated
Related Questions
Q. For the circuit shown in Figure, determine v out (t).

Q. A four-pole, lap-wound armature has 144 slots with two coil sides per slot, each coil having two turns. If the flux per pole is 20 mWb and the armature rotates at 720 r/min, cal

Conductors for Lines The sizing of conductor must depend upon the load it is expected to serve and other factors, such as capacity required in future. Or else conductors/cable

If an FM signal is given by s FM (t) = 100 cos [2πf c t +100 m(τ ) dτ ] and m(t) is given in figure, sketch the instantaneous frequency as a function of time and determine the pea

Q. Open-loop control system? An open-loop system is one in which the control action is independent of the output or desired result, whereas a closed-loop (feedback) system is o

What is asynchronous data transfer? It is a data transfer method which is used when the speed of an I/O device does not match with the speed of the microprocessor. Asynchronous

Discuss classification of conducting materials into low resistivity and high resistivity materials. Conducting materials are categorized as low resistivity materials and high r

voice signal is measured at 3.21692v and resides in an interval from 3.20v to 3.30. How big is an interval? MAx possible voltage?

Explain briefly the operation, draw the functions, formulas and observations. (i) Write an m-file "imnorm.m" which takes an image finds min and max values and uses them to nor

Explain Soft magnetic materials. Soft magnetic materials -They contain small enclosed area of hysteresis loop, high permeability low eddy current losses and high saturation