## Exhaustive search, Theory of Computation

Assignment Help:

A problem is said to be unsolvable if no algorithm can solve it. The problem is said to be undecidable if it is a decision problem and no algorithm can decide it. It should be noted that an unsolvable problem might be partially solvable by an algorithm that makes a complete search for a solution. In such case the solution is eventually found whenever it is defined, but the search might continue forever whenever the solution is undefined. Similarly, an undecidable problem might also be partially decidable by an algorithm that makes an exhaustive search.

#### REGULAR GRAMMAR, Find the Regular Grammar for the following Regular Express...

Find the Regular Grammar for the following Regular Expression: a(a+b)*(ab*+ba*)b.

#### Ardens theorem, how is it important

how is it important

#### NP complete, I want a proof for any NP complete problem

I want a proof for any NP complete problem

#### Turing machine, explain turing machine .

explain turing machine .

#### Turing machine , Let ? ={0,1} design a Turing machine that accepts L={0^m ...

Let ? ={0,1} design a Turing machine that accepts L={0^m 1^m 2^m } show using Id that a string from the language is accepted & if not rejected .

#### Strictly 2 - local automata, We will assume that the string has been augmen...

We will assume that the string has been augmented by marking the beginning and the end with the symbols ‘?' and ‘?' respectively and that these symbols do not occur in the input al

#### Graph Connectivity, Let G be a graph with n > 2 vertices with (n2 - 3n + 4)...

Let G be a graph with n > 2 vertices with (n2 - 3n + 4)/2 edges. Prove that G is connected.

#### Kleene closure, One might assume that non-closure under concatenation would...

One might assume that non-closure under concatenation would imply non closure under both Kleene- and positive closure, since the concatenation of a language with itself is included

#### Finiteness problem for regular languages, The fact that the Recognition Pro...

The fact that the Recognition Problem is decidable gives us another algorithm for deciding Emptiness. The pumping lemma tells us that if every string x ∈ L(A) which has length grea

#### Create a general algorithm from a checking algorithm, Claim Under the assum...

Claim Under the assumptions above, if there is an algorithm for checking a problem then there is an algorithm for solving the problem. Before going on, you should think a bit about  