Exhaustive search, Theory of Computation

A problem is said to be unsolvable if no algorithm can solve it. The problem is said to be undecidable if it is a decision problem and no algorithm can decide it. It should be noted that an unsolvable problem might be partially solvable by an algorithm that makes a complete search for a solution. In such case the solution is eventually found whenever it is defined, but the search might continue forever whenever the solution is undefined. Similarly, an undecidable problem might also be partially decidable by an algorithm that makes an exhaustive search.

Posted Date: 3/18/2013 1:12:38 AM | Location : United States







Related Discussions:- Exhaustive search, Assignment Help, Ask Question on Exhaustive search, Get Answer, Expert's Help, Exhaustive search Discussions

Write discussion on Exhaustive search
Your posts are moderated
Related Questions
State & prove pumping lemma for regular set. Show that for the language L={ap |p is a prime} is not regular

spam messages h= 98%, m= 90%, l= 80% non spam h=12%, m = 8%, l= 5% The organization estimates that 75% of all messages it receives are spam messages. If the cost of not blocking a

Prove that Language is non regular TRailing count={aa ba aaaa abaa baaa bbaa aaaaaa aabaaa abaaaa..... 1) Pumping Lemma 2)Myhill nerode

Paths leading to regions B, C and E are paths which have not yet seen aa. Those leading to region B and E end in a, with those leading to E having seen ba and those leading to B no

The objective of the remainder of this assignment is to get you thinking about the problem of recognizing strings given various restrictions to your model of computation. We will w

De?nition Deterministic Finite State Automaton: For any state set Q and alphabet Σ, both ?nite, a ?nite state automaton (FSA) over Q and Σ is a ?ve-tuple (Q,Σ, T, q 0 , F), w

Since the signi?cance of the states represented by the nodes of these transition graphs is arbitrary, we will allow ourselves to use any ?nite set (such as {A,B,C,D,E, F,G,H} or ev

Our DFAs are required to have exactly one edge incident from each state for each input symbol so there is a unique next state for every current state and input symbol. Thus, the ne

The Equivalence Problem is the question of whether two languages are equal (in the sense of being the same set of strings). An instance is a pair of ?nite speci?cations of regular

For every regular language there is a constant n depending only on L such that, for all strings x ∈ L if |x| ≥ n then there are strings u, v and w such that 1. x = uvw, 2. |u