Examples on probability, Mathematics

1. A machine comprises of three transformers A, B and C. Such machine may operate if at least 2 transformers are working. The probability of each transformer working is given as displayed below;

            P (A) = 0.6,      P (B) = 0.5,      P (C) = 0.7

A mechanical engineer went to inspect the working situations of those transformers. Determine the probabilities of having the given outcomes

i. Only one transformer operating

ii. Two transformers are operating

iii. All three transformers are operating

iv. None is operating

v.  At least two are operating

vi. At most two are operating

Solution

P(A) =0.6                     P(A) = 0.4                    P(B) = 0.5                    P(~B) = 0.5

P(C) = 0.7                    P(C¯) = 0.3

 i.  P(only one transformer is operating) is described by the given possibilities

                         1st                   2nd                  3rd

            P          (A                     B¯                      C¯ )        =  0.6 x 0.5 x 0.3 = 0.09

            P          (A                     B                      C¯ )         = 0.4 x 0.5 x 0.3 = 0.06

            P          (A                     B¯                      C)         = 0.4 x 0.5 x 0.7 = 0.14

∴ P(Only one transformer working)

            = 0.09 + 0.06 + 0.14 = 0.29

ii.  P(only two transformers are operating) is described by the given possibilities. 

                        1st                   2nd                  3rd

            P          (A                     B                      C¯ )        =  0.6 x 0.5 x 0.3 = 0.09

            P          (A                     B¯                     C)          = 0.6 x 0.5 x 0.7 = 0.21

            P          (A                     B                      C)         = 0.4 x 0.5 x 0.7 = 0.14

∴ P(Only two transformers are operating)

 = 0.09 + 0.21 + 0.14 = 0.44

iii.  P(all the three transformers are operating). 

 = P(A) x P(B) x P(C)

 = 0.6 x 0.5 x 0.7

= 0.21

iv.  P(none of the transformers is operating). 

= P(A) x P(B¯) x P(C¯)

= 0.4 x 0.5 x 0.3

= 0.06

v.  P(at least 2 working). 

 = P(exactly 2 working) + P(all three working)

  =  0.44 + 0.21

= 0.65

vi.  P(at most 2 working). 

     =  P(Zero working) + P(one working) + P(two working)

     = 0.06 +  0.29 + 0.44

= 0.79

Posted Date: 2/20/2013 4:31:15 AM | Location : United States







Related Discussions:- Examples on probability, Assignment Help, Ask Question on Examples on probability, Get Answer, Expert's Help, Examples on probability Discussions

Write discussion on Examples on probability
Your posts are moderated
Related Questions
finding missing values from given triangle diagra m..


what is the meaning of statistics

Basic "computation" formulas : Next, let's take a quick look at some basic "computation" formulas that will let us to actually compute some derivatives. Formulas 1)   If f


Judgment Sampling Here the interviewer chooses whom to interview believing that their view is more fundamental because they might be directly affected for illustration, to find

I want to complete my assignment, please explain me what is Inequalities?

Given two functions f(x) and g(x) which are differentiable on some interval I  (1) If W (f,g) (x 0 ) ≠ 0 for some x 0 in I, so f(x) and g(x) are linearly independent on the int

(1)   The following table gives the joint probability distribution p (X, Y) of random variables X and Y. Determine the following: (a) Do the entries of the table satisfy

Give the  introduction about Graphing? Somebody tells you that x = 5 and y = 3. "What does it all mean?!" you shout. Well here's a picture: This picture is what's call