Examples on probability, Mathematics

1. A machine comprises of three transformers A, B and C. Such machine may operate if at least 2 transformers are working. The probability of each transformer working is given as displayed below;

            P (A) = 0.6,      P (B) = 0.5,      P (C) = 0.7

A mechanical engineer went to inspect the working situations of those transformers. Determine the probabilities of having the given outcomes

i. Only one transformer operating

ii. Two transformers are operating

iii. All three transformers are operating

iv. None is operating

v.  At least two are operating

vi. At most two are operating

Solution

P(A) =0.6                     P(A) = 0.4                    P(B) = 0.5                    P(~B) = 0.5

P(C) = 0.7                    P(C¯) = 0.3

 i.  P(only one transformer is operating) is described by the given possibilities

                         1st                   2nd                  3rd

            P          (A                     B¯                      C¯ )        =  0.6 x 0.5 x 0.3 = 0.09

            P          (A                     B                      C¯ )         = 0.4 x 0.5 x 0.3 = 0.06

            P          (A                     B¯                      C)         = 0.4 x 0.5 x 0.7 = 0.14

∴ P(Only one transformer working)

            = 0.09 + 0.06 + 0.14 = 0.29

ii.  P(only two transformers are operating) is described by the given possibilities. 

                        1st                   2nd                  3rd

            P          (A                     B                      C¯ )        =  0.6 x 0.5 x 0.3 = 0.09

            P          (A                     B¯                     C)          = 0.6 x 0.5 x 0.7 = 0.21

            P          (A                     B                      C)         = 0.4 x 0.5 x 0.7 = 0.14

∴ P(Only two transformers are operating)

 = 0.09 + 0.21 + 0.14 = 0.44

iii.  P(all the three transformers are operating). 

 = P(A) x P(B) x P(C)

 = 0.6 x 0.5 x 0.7

= 0.21

iv.  P(none of the transformers is operating). 

= P(A) x P(B¯) x P(C¯)

= 0.4 x 0.5 x 0.3

= 0.06

v.  P(at least 2 working). 

 = P(exactly 2 working) + P(all three working)

  =  0.44 + 0.21

= 0.65

vi.  P(at most 2 working). 

     =  P(Zero working) + P(one working) + P(two working)

     = 0.06 +  0.29 + 0.44

= 0.79

Posted Date: 2/20/2013 4:31:15 AM | Location : United States







Related Discussions:- Examples on probability, Assignment Help, Ask Question on Examples on probability, Get Answer, Expert's Help, Examples on probability Discussions

Write discussion on Examples on probability
Your posts are moderated
Related Questions

In triangle DEF, angle E is congruent to angle F. If side DE = 3x-6, Side EF = x+2 and Side DF = 18-5x. Find the length of side DE


Inverse Sine : Let's begin with inverse sine.  Following is the definition of the inverse sine. y = sin -1 x         ⇔     sin y = x                for - ?/2 ≤ y ≤ ?/2 Hen

how to compare fractions

if tan theta =1,find the value of sin4 theta + cos4 theta

Graph        f ( x ) = - x 2 + 2x + 3 . Solution It is a parabola in the general form.                              f ( x ) = ax 2 + bx + c In this form, the x-coor

What is Geometry?

Basic indefinite integrals The first integral which we'll look at is the integral of a power of x.                                ∫x n dx = (x n +1 / n + 1)+ c,          n

A solid is in the form of a right circular cone mounted on a hemisphere. The radius of the hemisphere is 3.5 cm and the height of the cone is 4 cm. The solid is placed in a cylindr