Example of bars of varying cross section, Civil Engineering

Example of Bars of Varying Cross Section:

In the numerical example under consideration

δ = 750 × 300/( π/4) × 200 2 × 60 +750 × 400/(π/4) × 1352 × 60 + 750 × 200/(π/4) × 60 2 × 60 + 750 × 500/(π/4) × 100 2 × 60

+ 750/ (π/4) × 60 (300/2002+400/1352 + 200/602 + 500/1002) = 2.14865 mm

In the bar, display in Figure 16, the axial pull is applied at the ends and therefore the axial force in all the members is similar. On the bar, display in Figure 17(a), the external forces is applied at intermediate sections also. In such cases, the axial force in every member should be evaluated first, before any deformation calculations. This could be accomplished through considering equilibrium of each of the sections whereas external loads are applied. Though no external load has been prescribed at the LHS end, the support reaction has to be computed and taken as the external load. Equilibrium analysis could be simply carried out by treating each segment as a free body as display in Figure (b).

For instance, consider the equilibrium of the segment 4 in Figure (b). At the RHS end of the member a point load of 60 kN is applied. Therefore, for the member to be in equilibrium a force of - 60 kN should be applied at the RHS end of the member. Thus, the member is subjected to a tensile force of 60 kN which is represented through the internal arrows within accordance along with the sign conventions you have already learnt. Member 3 is pulled within a tensile force of 60 kN exerted through member 4 and further the external force of 80 kN also pulls the member in the similar direction, resulting in the member carrying a total tensile force of 140 kN. Proceeding therefore, the axial forces in all the members could be computed. To simplify the graphical representation we might display the member forces along along with external forces as shown in Figure(c).

Now let us compute the total elongation of the bar, taking the elastic modulus, E, as 200 kN/mm2.

2324_Example of Bars of Varying Cross Section.png

Figure

δ = ∑ δi = ∑  Pi Li /Ai Ei

=(160 × 600/800 × 200)+ (100 × 800/200 × 200)+ (140 × 800/600 × 200)+(60 × 500/150 × 200)

= 0.6 + 2.0 + 0.9333 + 1.0

= 4.53333 mm.

Posted Date: 1/30/2013 5:40:03 AM | Location : United States







Related Discussions:- Example of bars of varying cross section, Assignment Help, Ask Question on Example of bars of varying cross section, Get Answer, Expert's Help, Example of bars of varying cross section Discussions

Write discussion on Example of bars of varying cross section
Your posts are moderated
Related Questions
Schedule control is concerned with all of the following except: a. Influencing the factors which create schedule changes b. Determining that the schedule has changed c.



If you have water pressure and wish to handle it, do not cause flow in the line, which will decrease pressure because of friction. To keep pressure up, decrease friction by increas

State an expression for 'zero air-void line' and illustrate the line for a specific gravity of 2.65. What are the various factors that affect the compaction of soil in the field

Different type of Stones Stones used for civil engineering works can be classified in the following 3 ways:    Geological    Physical    Chemical

Q. Fire resistance of steelwork Because of the high thermal conductivity of steel, temperature of unprotected steel is almost the same as temperature of fire. Because the yiel

what is snowcem?

Calculate the Daily Standard Production Rate of Equipment An excavator with a bucket capacity of 3-yd 3 has a standard operating cycle time of 40 seconds. The daily standard p

Explain the Non Destructive Inspection Steel/Cast Iron Substructures Some of the structural defects in steel structures may not be visible during visual inspection. In that eve