Example of bars of varying cross section, Civil Engineering

Example of Bars of Varying Cross Section:

In the numerical example under consideration

δ = 750 × 300/( π/4) × 200 2 × 60 +750 × 400/(π/4) × 1352 × 60 + 750 × 200/(π/4) × 60 2 × 60 + 750 × 500/(π/4) × 100 2 × 60

+ 750/ (π/4) × 60 (300/2002+400/1352 + 200/602 + 500/1002) = 2.14865 mm

In the bar, display in Figure 16, the axial pull is applied at the ends and therefore the axial force in all the members is similar. On the bar, display in Figure 17(a), the external forces is applied at intermediate sections also. In such cases, the axial force in every member should be evaluated first, before any deformation calculations. This could be accomplished through considering equilibrium of each of the sections whereas external loads are applied. Though no external load has been prescribed at the LHS end, the support reaction has to be computed and taken as the external load. Equilibrium analysis could be simply carried out by treating each segment as a free body as display in Figure (b).

For instance, consider the equilibrium of the segment 4 in Figure (b). At the RHS end of the member a point load of 60 kN is applied. Therefore, for the member to be in equilibrium a force of - 60 kN should be applied at the RHS end of the member. Thus, the member is subjected to a tensile force of 60 kN which is represented through the internal arrows within accordance along with the sign conventions you have already learnt. Member 3 is pulled within a tensile force of 60 kN exerted through member 4 and further the external force of 80 kN also pulls the member in the similar direction, resulting in the member carrying a total tensile force of 140 kN. Proceeding therefore, the axial forces in all the members could be computed. To simplify the graphical representation we might display the member forces along along with external forces as shown in Figure(c).

Now let us compute the total elongation of the bar, taking the elastic modulus, E, as 200 kN/mm2.

2324_Example of Bars of Varying Cross Section.png

Figure

δ = ∑ δi = ∑  Pi Li /Ai Ei

=(160 × 600/800 × 200)+ (100 × 800/200 × 200)+ (140 × 800/600 × 200)+(60 × 500/150 × 200)

= 0.6 + 2.0 + 0.9333 + 1.0

= 4.53333 mm.

Posted Date: 1/30/2013 5:40:03 AM | Location : United States







Related Discussions:- Example of bars of varying cross section, Assignment Help, Ask Question on Example of bars of varying cross section, Get Answer, Expert's Help, Example of bars of varying cross section Discussions

Write discussion on Example of bars of varying cross section
Your posts are moderated
Related Questions
what is the allwoable combined aggregates Fineness Modulus

Question What is key application of inverted siphons? What are major drawbacks of using inverted siphons ? Answer Inverted siphons are planned at locations in which sewer s

Define the Ignitability - Hazardous Waste - is a liquid with flash point - Not a liquid and capable of spontaneous and sustained combustion under normal conditions - Ign

this is our final year project .please help me to guide about it

Question What is dissimilarity between air chamber and surge tank ? Answer Air chambers and surge tanks are usually set up in watermain to ease stress on schem

Question What are major advantages of using top-down approach in basement construction? Answer The main advantages of top-down approach are listed below- (i) Stru

Determine the types of untensioned Reinforcement  Reinforcement used as untensioned steel should be one of the following types : (a)  Mild steel and medium tensile steel bar

WHAT ARE THE DIFFERENT TYPES OF BRIDGES

Pressure distribution under rigid and flexible footings For rigid and thick footings, pressure distribution under the footings is generally presumed to be linear. If symmetric

Q. Energy absorbed in heeling during vessel berthing? When a vessel   berths on a fender system at a pier, point of contact of berthing ship can be below or above the centre of