Example of bars of varying cross section, Civil Engineering

Example of Bars of Varying Cross Section:

In the numerical example under consideration

δ = 750 × 300/( π/4) × 200 2 × 60 +750 × 400/(π/4) × 1352 × 60 + 750 × 200/(π/4) × 60 2 × 60 + 750 × 500/(π/4) × 100 2 × 60

+ 750/ (π/4) × 60 (300/2002+400/1352 + 200/602 + 500/1002) = 2.14865 mm

In the bar, display in Figure 16, the axial pull is applied at the ends and therefore the axial force in all the members is similar. On the bar, display in Figure 17(a), the external forces is applied at intermediate sections also. In such cases, the axial force in every member should be evaluated first, before any deformation calculations. This could be accomplished through considering equilibrium of each of the sections whereas external loads are applied. Though no external load has been prescribed at the LHS end, the support reaction has to be computed and taken as the external load. Equilibrium analysis could be simply carried out by treating each segment as a free body as display in Figure (b).

For instance, consider the equilibrium of the segment 4 in Figure (b). At the RHS end of the member a point load of 60 kN is applied. Therefore, for the member to be in equilibrium a force of - 60 kN should be applied at the RHS end of the member. Thus, the member is subjected to a tensile force of 60 kN which is represented through the internal arrows within accordance along with the sign conventions you have already learnt. Member 3 is pulled within a tensile force of 60 kN exerted through member 4 and further the external force of 80 kN also pulls the member in the similar direction, resulting in the member carrying a total tensile force of 140 kN. Proceeding therefore, the axial forces in all the members could be computed. To simplify the graphical representation we might display the member forces along along with external forces as shown in Figure(c).

Now let us compute the total elongation of the bar, taking the elastic modulus, E, as 200 kN/mm2.

2324_Example of Bars of Varying Cross Section.png

Figure

δ = ∑ δi = ∑  Pi Li /Ai Ei

=(160 × 600/800 × 200)+ (100 × 800/200 × 200)+ (140 × 800/600 × 200)+(60 × 500/150 × 200)

= 0.6 + 2.0 + 0.9333 + 1.0

= 4.53333 mm.

Posted Date: 1/30/2013 5:40:03 AM | Location : United States







Related Discussions:- Example of bars of varying cross section, Assignment Help, Ask Question on Example of bars of varying cross section, Get Answer, Expert's Help, Example of bars of varying cross section Discussions

Write discussion on Example of bars of varying cross section
Your posts are moderated
Related Questions
Q. How to set Location of the bridge? A bridge is normally located where the river section has minimum width so that the structure becomes shorter and economical. As far as pos

what is the procedure for gsb proctor test for matrial sampling for lab density

Q. What is Multiple-cell box girder? Multiple-cell box girder: cells connected by top flanges vs. cells connected both by top and bottom flanges When the depth of a box gi

Explain the Watersheds - Hydrology The surface area on which runoff generated will flow to a common stream or body of water by gravity. Often separated by higher elevations/top


Q. Explain Plate loading test? In general iron plates either 60 cm squares or 75 cm dia and 16 mm thick are used, size of plate should not be less then 1/5th of the width of f

Q. Explain about Differential settlement? Structural stability is not very much affected by uniform settlement of a structural system. Major amount of damages will be taking pl

Define the Hazardous Waste 1. Any waste or combination of waste that poses a substantial danger now or future to humans, plants, and animals without special precautions. 2.

differentiate between components and resolved parts

Q. Why we need Transition slabs in bridges? In a number of designs, transition slabs are provided on the approach to bridges. For example soils in embankment supporting the ro