Emptiness problem, Theory of Computation

The Emptiness Problem is the problem of deciding if a given regular language is empty (= ∅).

Theorem 4 (Emptiness) The Emptiness Problem for Regular Languages is decidable.

Proof: We'll sketch three different algorithms for deciding the Emptiness Problem, given some DFA A = (Q,Σ, T, q0, F).

(Emptiness 1) A string w is in L(A) iff it labels a path through the transition graph of A from q0 to an accepting state. Thus, the language will be non-empty iff there is some such path. So the question of Emptiness reduces to the question of connectivity: the language recognized by A is empty iff there is no accepting state in the connected component of its transition graph that is rooted at q0. The problem of determining connected components of directed graphs is algorithmically solvable,by Depth-First Search, for instance (and solvable in time linear in the number of nodes). So, given A, we just do a depth-?rst search of the transition graph rooted at the start state keeping track of whether we encounter any accepting state. We return "True" iff we ?nd none.

Posted Date: 3/21/2013 1:51:00 AM | Location : United States







Related Discussions:- Emptiness problem, Assignment Help, Ask Question on Emptiness problem, Get Answer, Expert's Help, Emptiness problem Discussions

Write discussion on Emptiness problem
Your posts are moderated
Related Questions
Claim Under the assumptions above, if there is an algorithm for checking a problem then there is an algorithm for solving the problem. Before going on, you should think a bit about

Different types of applications and numerous programming languages have been developed to make easy the task of writing programs. The assortment of programming languages shows, dif

DEGENERATE OF THE INITIAL SOLUTION

The path function δ : Q × Σ* → P(Q) is the extension of δ to strings: This just says that the path labeled ε from any given state q goes only to q itself (or rather never l

Let L 3 = {a i bc j | i, j ≥ 0}. Give a strictly 2-local automaton that recognizes L 3 . Use the construction of the proof to extend the automaton to one that recognizes L 3 . Gi

It is not hard to see that ε-transitions do not add to the accepting power of the model. The underlying idea is that whenever an ID (q, σ  v) directly computes another (p, v) via

how to convert a grammar into GNF

The SL 2 languages are speci?ed with a set of 2-factors in Σ 2 (plus some factors in {?}Σ and some factors in Σ{?} distinguishing symbols that may occur at the beginning and en

Theorem (Myhill-Nerode) A language L ⊆ Σ is recognizable iff ≡L partitions Σ* into ?nitely many Nerode equivalence classes. Proof: For the "only if" direction (that every recogn

As de?ned the powerset construction builds a DFA with many states that can never be reached from Q′ 0 . Since they cannot be reached from Q′ 0 there is no path from Q′ 0 to a sta