Electrochemical cells, Chemistry

ELECTROCHEMICAL CELLS

Galvanic and electrolytic cells:

The difference between potential of the two metals results in a potential difference (also called a electromotive force or voltage, emf) between the two half-cells. That can be measured by means of a high impedance voltmeter which measures the driving force or voltage for reaction without allowing current to flow from which can be calculated thermodynamic data. Alternatively the reaction can be allowed to proceed by connecting the two half-cells by circuit (a wire or a resistor) and allowing the current to flow. These are both examples of galvanic cells, where the chemical reaction occurs. Electrons flow from the electrode with the most negative potential (the anode, where oxidation occurs) to that with the most positive potential (the cathode, where reduction occurs). The salt bridge (or porous glass frit) allows ions to transfer into each half-cell. That flow counteracts the imbalance of charge that would develop in each half cell as electrons (e-) pass from one electrode to the other, which would inhibit the reaction. The need for a frit or salt bridge is avoided if both half cells can share a common electrolyte. It is a special case, where all redox active ions in the solution react at one half cell electrode only and therefore do not have to be separated from the other electrode.

1024_electrochemical cells.png

Fig. 1. Examples of (a) an electrolytic cell incorporating a salt bridge; (b) a galvanic cell incorporating a porous frit.

Other half-cell reactions:

The metal-insoluble salt electrode consists of a metal M coated with a porous insoluble salt MX in a solution of X-. A good example is the silver/silver chloride electrode (Fig. 2a) for which the half-cell reaction is, where the reduction of solid silver chloride produces solid silver and releases chloride ion into solution.

 

 

2232_other half reaction.png

Fig. 2. (a) The silver/silver chloride half-cell; (b) the ferric (Fe3+)/ferrous (Fe2+) half-cell; (c) the

fluorine/fluoride ion half-cell.

Posted Date: 7/20/2012 4:30:59 AM | Location : United States







Related Discussions:- Electrochemical cells, Assignment Help, Ask Question on Electrochemical cells, Get Answer, Expert's Help, Electrochemical cells Discussions

Write discussion on Electrochemical cells
Your posts are moderated
Related Questions
Cavitation occurs when the pressure in localized regions reaches the vapor pressure. This can cause actually cause structural damage if vapor bubbles form and burst. Consider a sys


group1 metal reacts execess of oxygen


How many unpaired electrons are present in Ni 2+   cation  (atomic number = 28): (1) 0        (2) 2        (3) 4        (4) 6 Ans:  2

Describe this blocking by drawing the interaction between water and the catalyst analogous to that of task 1 of this problem.   If a metal catalyzes the hydrogenation of alk

what is water gas and how is it prepared?

how we determine the qualitativ and quantitativ analysis of uv

Physical Properties of Cinnamic Acid (a) Cinnamic Acid is a white crystalline solid and its melting point 133° C . (b) Cinnamic Acid is sparingly soluble in water. (c) Ci

Assume that we want to make buffer by dissolving in water some amount of the compound which we selected by the table as given below; After that adding either strong acid (f