Electrochemical cells, Chemistry

ELECTROCHEMICAL CELLS

Galvanic and electrolytic cells:

The difference between potential of the two metals results in a potential difference (also called a electromotive force or voltage, emf) between the two half-cells. That can be measured by means of a high impedance voltmeter which measures the driving force or voltage for reaction without allowing current to flow from which can be calculated thermodynamic data. Alternatively the reaction can be allowed to proceed by connecting the two half-cells by circuit (a wire or a resistor) and allowing the current to flow. These are both examples of galvanic cells, where the chemical reaction occurs. Electrons flow from the electrode with the most negative potential (the anode, where oxidation occurs) to that with the most positive potential (the cathode, where reduction occurs). The salt bridge (or porous glass frit) allows ions to transfer into each half-cell. That flow counteracts the imbalance of charge that would develop in each half cell as electrons (e-) pass from one electrode to the other, which would inhibit the reaction. The need for a frit or salt bridge is avoided if both half cells can share a common electrolyte. It is a special case, where all redox active ions in the solution react at one half cell electrode only and therefore do not have to be separated from the other electrode.

1024_electrochemical cells.png

Fig. 1. Examples of (a) an electrolytic cell incorporating a salt bridge; (b) a galvanic cell incorporating a porous frit.

Other half-cell reactions:

The metal-insoluble salt electrode consists of a metal M coated with a porous insoluble salt MX in a solution of X-. A good example is the silver/silver chloride electrode (Fig. 2a) for which the half-cell reaction is, where the reduction of solid silver chloride produces solid silver and releases chloride ion into solution.

 

 

2232_other half reaction.png

Fig. 2. (a) The silver/silver chloride half-cell; (b) the ferric (Fe3+)/ferrous (Fe2+) half-cell; (c) the

fluorine/fluoride ion half-cell.

Posted Date: 7/20/2012 4:30:59 AM | Location : United States







Related Discussions:- Electrochemical cells, Assignment Help, Ask Question on Electrochemical cells, Get Answer, Expert's Help, Electrochemical cells Discussions

Write discussion on Electrochemical cells
Your posts are moderated
Related Questions
It is Hydrated Potassium Aluminium Sulfate [ KAl(SO4)2·12H2O ].

Why magnesium does not impart any colour to Bunsen flame while calcium does

how to draw molecular orbital diagram for nitrogen?

Aromatic Carbonyl Compounds - Aldehydes and Ketones Aromatic aldehydes are of two types: The compounds where - CHO group is attached directly to an aromatic ring, like benza

I need organic chemistry exams in pdf form Project Description: Hi, i need someone to get 100 unique organic chemistry exams from US universities and colleges. The needs f

Q. a. What is the origin of fossil fuels?      b. List three fossil fuels.      c. Are fossil fuels a renewable resource? Answer: a. Coal, natural gas and oil. b. Fossil fue


What will happen if you mix nitrogen and hydrogen gas at room temperature? Explain your reasoning. Calculate the mole fraction of NH 3 that would form theoretically at 298.15


how do you convert mL/s to mol/s using the colume of oxygen at satp?