1. Solve the given differential equation, subject to the initial conditions:
. x2y''-3xy'+4y = 0
. y(1) = 5, y'(1) = 3
2. Find two linearly independent power series solutions for each differential equation about the ordinary point x=0
Y'' - xy' - (x+2)y=o
3. Use the definition of the Laplace Transform, to find
L{e^{-t }cosht}
4. Find f(t) if : f(t)=L^{-1}
5. Solve : y'+y= f(t)
where: f(t) = { 1 if 0 ≤ t < 1
{-1 if t ≥ 1
Recall that if f(t) = { g(t) if 0 ≤ t < a
{ h(t) if t ≥ 1
Then f(t)=g(t)-g(t)u(t-a)+h(t)u(t-a)
6. y'(t) = cos t+