Determine the probability , Mathematics

A medical survey was conducted in order to establish the proportion of the population which was infected along with cancer. The results indicated that 40 percent of the population was suffering from the disease.

A sample of 6 people was later taken and examined for the disease. Determine the probability that the given outcomes were observed

a) Merely one person had the disease

b) Exactly two people had the disease

c) Mostly two people had the disease

d) At least two people had the disease

e) Three or four(4) people had the disease

Solution

P(a persona having cancer) = 40%  = 0.4 = P

P(a person not having cancer) = 60%             = 0.6 = 1 - p = q

a)      P(only one person having cancer)     

= 6C1 (0.4)(0.6)5

=  6!/(5! 1!)(0.4)1(0.6)5                      

= 0.1866

Note that from the formula

nCrprqn-r:           where as: n = sample size = 6

                                    p = 0.4

                                    r = 1 = simply one person having cancer

b)      P(2 people had the disease)

= 6C2 (0.4)2 (0.6)4

6!/(6! 2!)=  (0.4)2 (0.6)5

(6 * 5 * 4!)/(4! * 2 *1)=   (0.4)2 (0.6)5

= 15 × (0.4)2 (0.6)5

= 0.311

c)      P(at most 2) = P(0) + P(1) + P(2) = P(0) or P(1) or P(2)

So we estimate the probability of each and add them up.

P(0) = P(nobody having cancer)

= 6C0 (0.4)0(0.6)6

6!/(0! 6!)=  (0.4)0(0.6)6

= (0.6)6

 = 0.0467

The probabilities of P(1) and P(2) have been worked out in part (a) and

Hence P(at most 2) = 0.0467 + 0.1866 + 0.311 = 0.5443

d)      P(at least 2)

            = P(2) + P(3) + P(4) + P(5) + P(6)

= 1 - [P(0) + P(1)] it is a shorter way of working out the solution as

[P(0) + P(1) + P(2) + P(3) + P(4) + P(5) + P(6) = 1]

= 1 - (0.0467 + 0.1866)

= 0.7667

e)      P(3 or 4 people had the disease)

= P(3) +P(4)

= 6C3(0.4)3(0.6)3  + 6C4(0.4)4(0.6)2

= ( 6!/(3! 3!)) (0.4)3(0.6)3 + (6!/(2! 4!)) (0.4)4(0.6)2

 = {(6 × 5 × 4 × 3!)/ (3 × 2 × 1 × 3!)}(0.4)3(0.6)3 + {(6 × 5 × 4!)/(2 × 1 × 4!)}  (0.4)4(0.6)2

 = 20(0.4)3(0.6)3  + 15(0.4)4(0.6)2 

= (20 × 0.013824) + (15 × 0.009216)

= 0.27648 + 0.13824

 = 0.41472

Posted Date: 2/19/2013 8:15:35 AM | Location : United States







Related Discussions:- Determine the probability , Assignment Help, Ask Question on Determine the probability , Get Answer, Expert's Help, Determine the probability Discussions

Write discussion on Determine the probability
Your posts are moderated
Related Questions
If 4x^4+9x^4=64 then the maximum value of x^2+y^2 is solution) From the eq. finding the value of x^2 and putting it in x^2 + y^2.we get 2nd eq. differentiating that and putting

how to multiply 8654.36*59

Example of Graphing Equations: Example: By using the above figure, find out the distance traveled if the average speed is 20 mph and the time traveled is 40 minutes. T

First, a solution to an equation or inequality is any number that, while plugged into the equation/inequality, will satisfy the equation/inequality. Thus, just what do we mean by

how can i solve a multi variable power regression equation..? EX: y=a*(x1^b)*(x2^c).... i need to solve with 4 variable....

Find out all the numbers c that satisfy the conclusions of the Mean Value Theorem for the given function.                                               f ( x ) = x 3 + 2 x 2 -


Data collected from the STATS 10x class survey one semester included responses to questions on the number of different sexual partners and on the number of pairs of shoes the stude

A large pipe dispenses 750 gallons of water in 50 seconds. At this rate, how long will it take to dispense 330 gallons? Find out the number of gallons per second by dividing 75

We have seen that if y is a function of x, then for each given value of x, we can determine uniquely the value of y as per the functional relationship. For some f