Determine the probability , Mathematics

A medical survey was conducted in order to establish the proportion of the population which was infected along with cancer. The results indicated that 40 percent of the population was suffering from the disease.

A sample of 6 people was later taken and examined for the disease. Determine the probability that the given outcomes were observed

a) Merely one person had the disease

b) Exactly two people had the disease

c) Mostly two people had the disease

d) At least two people had the disease

e) Three or four(4) people had the disease

Solution

P(a persona having cancer) = 40%  = 0.4 = P

P(a person not having cancer) = 60%             = 0.6 = 1 - p = q

a)      P(only one person having cancer)     

= 6C1 (0.4)(0.6)5

=  6!/(5! 1!)(0.4)1(0.6)5                      

= 0.1866

Note that from the formula

nCrprqn-r:           where as: n = sample size = 6

                                    p = 0.4

                                    r = 1 = simply one person having cancer

b)      P(2 people had the disease)

= 6C2 (0.4)2 (0.6)4

6!/(6! 2!)=  (0.4)2 (0.6)5

(6 * 5 * 4!)/(4! * 2 *1)=   (0.4)2 (0.6)5

= 15 × (0.4)2 (0.6)5

= 0.311

c)      P(at most 2) = P(0) + P(1) + P(2) = P(0) or P(1) or P(2)

So we estimate the probability of each and add them up.

P(0) = P(nobody having cancer)

= 6C0 (0.4)0(0.6)6

6!/(0! 6!)=  (0.4)0(0.6)6

= (0.6)6

 = 0.0467

The probabilities of P(1) and P(2) have been worked out in part (a) and

Hence P(at most 2) = 0.0467 + 0.1866 + 0.311 = 0.5443

d)      P(at least 2)

            = P(2) + P(3) + P(4) + P(5) + P(6)

= 1 - [P(0) + P(1)] it is a shorter way of working out the solution as

[P(0) + P(1) + P(2) + P(3) + P(4) + P(5) + P(6) = 1]

= 1 - (0.0467 + 0.1866)

= 0.7667

e)      P(3 or 4 people had the disease)

= P(3) +P(4)

= 6C3(0.4)3(0.6)3  + 6C4(0.4)4(0.6)2

= ( 6!/(3! 3!)) (0.4)3(0.6)3 + (6!/(2! 4!)) (0.4)4(0.6)2

 = {(6 × 5 × 4 × 3!)/ (3 × 2 × 1 × 3!)}(0.4)3(0.6)3 + {(6 × 5 × 4!)/(2 × 1 × 4!)}  (0.4)4(0.6)2

 = 20(0.4)3(0.6)3  + 15(0.4)4(0.6)2 

= (20 × 0.013824) + (15 × 0.009216)

= 0.27648 + 0.13824

 = 0.41472

Posted Date: 2/19/2013 8:15:35 AM | Location : United States







Related Discussions:- Determine the probability , Assignment Help, Ask Question on Determine the probability , Get Answer, Expert's Help, Determine the probability Discussions

Write discussion on Determine the probability
Your posts are moderated
Related Questions

Q. How to Convert Decimals to Percentages? Ans. Remember that when you have a decimal number, the digits to the right of the decimal point have the following meaning:


A Class 4 teacher was going to teach her class fractions. At the beginning of the term she asked the children, "If you had three chocolates, and wanted to divide them equally among

Properties of t distribution 1. The t distribution ranges from - ∞ to ∞ first as does the general distribution 2. The t distribution as the standard general distribution is

DEVELOPING AN UNDERSTANDING OF SUBTRACTION :  The process of subtraction is the reverse of that of addition. Adding more to a collection to make it bigger is just the reverse

find the area bounded by the curve y=5x^2-4x+3 from the limit x=0 to x=5

ABC is a right triangle right-angled at C and AC=√3 BC. Prove that ∠ABC=60 o . Ans:    Tan B = AC/BC Tan B = √3 BC/BC Tan B =√3 ⇒ Tan B = Tan 60 ⇒ B = 60

Factor following.                    x 2 - 20 x + 100 Solution In this case we've got three terms & it's a quadratic polynomial.  Notice down as well that the constant

i am not getting what miss has taught us please will you will help me in my studies