Determinant of an n×n matrix, Mathematics

How can we calculate the Determinant of an N×N Matrix?

Posted Date: 2/12/2013 4:52:39 AM | Location : United States





The determinant of an n×n matrix can be calculated by adding the products of the element in any row or column multiplied by their cofactors. If we utilized the symbol ? for determinant

Then ? = aA + bB + cC

Or = dD + eE + fF

Note: generally for calculation purposes we obtain ? = aA + bB + cC

Thus in the example under discussion

? = (4 *-3) + (2 * 2) + (3 * 3) = 1

Posted by | Posted Date: 2/12/2013 4:54:02 AM


Related Discussions:- Determinant of an n×n matrix, Assignment Help, Ask Question on Determinant of an n×n matrix, Get Answer, Expert's Help, Determinant of an n×n matrix Discussions

Write discussion on Determinant of an n×n matrix
Your posts are moderated
Related Questions
Identify the surface for each of the subsequent equations. (a) r = 5 (b) r 2 + z 2 = 100 (c) z = r Solution (a)  In two dimensions we are familiar with that this

A sinking ship signals to the shore for assistance. Three individuals spot the signal from shore. The ?rst individual is directly perpendicular to the sinking ship and 20 meters in

Juan is g years old and Eva is 2 years younger than Juan. a.Find the sum of their ages in terms of g. b.Find the sum of their ages in g years'' time,in terms of g.

assuming that the earth''s sphere with a radius of 6400 km.. find the distance along a 3 degree arc at the equator of the earth''s surface?

Marketing management,Analysis,planning and implementation

Suppose that at some future time every telephone in the world is assigned a number that contains a country code, 1 to 3 digits long, that is, of the form X, XX , XXX or followed

Properties of Dot Product - proof Proof of: If v → • v → = 0 then v → = 0 → This is a pretty simple proof.  Let us start with v → = (v1 , v2 ,.... , vn) a

Linear functions are of the form: y = a 0 + a 1 x 1 + a 2 x 2 + ..... + a n x n where a 0 , a 1 , a 2 ..... a n are constants and x 1 , x 2 ..... x n a

Derive the probability distribution of the completion times: a. The following probability distributions relate to the completion times, in weeks, T A and T B of two independ

Find out the area under the parametric curve given by the following parametric equations.  x = 6 (θ - sin θ) y = 6 (1 - cos θ) 0 ≤ θ ≤ 2Π Solution Firstly, notice th