Describe how a wheatstone bridge works, , Electrical Engineering

Explain all of your steps and follow a logical train of thought. Clearly describe all design rationale.

1)  Design a device to deliver a sinusoidal 500kHz pulse through a piezoelectric device, given a signal source that can deliver 10 mV (peak-to-peak) voltage at that frequency. Use realistic circuit components and fully characterize the circuit input and output impedance, and gain.

2)  You have designed an instrumentation amplifier using a standard op-amp with an open-loop gain of 100 dB at DC. You notice that the gain of your circuit starts to fall at about 1kHz, even though you have not used any inductors or capacitors in your circuit. Explain what may have caused this. Sketch any supporting figures.

3)  You are trying to measure the ECG of a baby in utero. Describe why and how this could be done, and whether it could be done noninvasively. Explain limitations to detecting and differentiating the signal from maternal "noise", and how these limitations might be overcome.

4)  Describe how a wheatstone bridge works, and design one to detect a 10 ohm change in resistance. What determines the precision of your measurement? Give an example with realistic components.

5)  Explain why electrical current can flow through an insulator sandwiched between two conductors. What happens (physically) when superconductors are used instead, and what can this effect be used to measure? Estimate the size of a typical characteristic current of a junction (J_0), where J=J_0sin(p_1-p_2), where p_1 and p_2 are the phases on each side of the insulator. Estimate the size of the maximum current generated by a typical SQUID detector.

6)  A colleague tells you she has made some nanometer-sized particles that act as tiny injectable SQUID detectors. She tells you the particles operate by sensing a field in the SQUID, and transmitting a current to a conductor surrounding the particles, which in turn changes the local magnetic field. This is in turn detected with MRI. What, if anything, makes you skeptical of her nanoparticles? Could SQUID detectors be implanted? Can they be made on a nm scale?

Posted Date: 2/22/2013 2:56:30 AM | Location : United States







Related Discussions:- Describe how a wheatstone bridge works, , Assignment Help, Ask Question on Describe how a wheatstone bridge works, , Get Answer, Expert's Help, Describe how a wheatstone bridge works, Discussions

Write discussion on Describe how a wheatstone bridge works,
Your posts are moderated
Related Questions
assume that the top of the stack in the program is pointed by the register sp.

Q. Draw and explain a monostable multivibrator ? The monostable configuration consists of two amplifier stages interconnected in such a manner as to possess one stable state. T

Q. Explain, with the aid of diagrams, the following in relation to the construction of power transformers. Include the advantages and disadvantages in your description. a) Core


Q. A 100-kW, 230-V, dc shunt generator, with R a = 0.05 , and R f = 57.5  has no-load rotational loss (friction, windage, and core loss) of 1.8 kW. Compute: (a) The generato

Q. Find the currents I x using current division and equivalent resistor reductions for the networks given in Figure.


Discuss important properties and uses of Glass and glass products. Glass and glass products - Glass is an inorganic material build by the fusion of various metallic oxides. The

Q. Write a short note on heat sink For transistors handling small signals ,the power dissipated at the collector is small.Such transistors have little chances of thermal runawa

Explain the Working of Asynchronous (Ripple) Counters? An external clock is connected to the clock input of the first flip-flop (FF0) only. Thus FF0 changes state at the falli