Derive bending equation, Mechanical Engineering

Q - Derive bending equation that is,; M/I =  σ /y = E/R.                                                                          

Sol.: With reference to the figure given to us, consider any two normal sections AB and CD of a beam at small distance   δ L apart (that is, AC = BD = δ L). Let AB and CD intersect neutral layer at the points M and N respectively.

Let;

M = bending moment acting on beam

θ = Angle subtended at centre by the arc.

R = Radius of curvature of neutral layer M' N' .

At any distance 'y' from neutral layer MN, consider layer EF.

As shown in the figure the beam because of sagging bending moment. After bending, A' B', C' D' , M' N'  and

E'F' represent final positions of AB, CD, MN and EF in that order.

When produced, A' B' and C' D' intersect each other at the O subtending an angle θ radian at point O, which is centre of curvature.

As   L is quite small, arcs A' C' , M' N' , E' F'  and B' D'  can be taken as circular.

Now, strain in layer EF because of bending can be given by e = (E F  - EF)/EF = (E F  - MN)/MN

As MN is the neutral layer, MN = M' N'

 

2366_bending equation.png 
Let; σ  = stress set up in layer EF  because of bending

E = Young's modulus of material of beam.
1131_bending equation1.png
Equate the equation (i) and (ii);
1553_bending equation2.png  


Let;       σ = stress set up in layer EF because of bending

E = Young's modulus of material of beam.

704_bending equation3.png

1134_bending equation4.png

At distance 'y', let us consider an elementary strip of quite small thickness dy. We have already assumed that 'σ ' is bending stress in this strip.

Let dA = area of the elementary strip. Then, force developed in this strip =   σ.dA.

Then the, elementary moment of resistance because of this elementary force can be
given by dM = f.dA.y

Total moment of resistance because of all such elementary forces can be given by
1355_bending equation5.png
From the Equation (iii),
185_bending equation6.png
By putting this value of  f in Equation (iv), we get
1918_bending equation7.png
But
2036_bending equation8.png
where  I = Moment of inertia of whole area about neutral axis N-A.
2439_bending equation9.png

Where;

M = Bending moment

I  = Moment of Inertia about axis of bending that is; Ixx

y  = Distance of the layer at which the bending stress is consider

(We take always the maximum value of y, that is, distance of extreme fiber from N.A.)

E = Modulus of elasticity of beam material.

R = Radius of curvature

Posted Date: 10/20/2012 8:04:39 AM | Location : United States







Related Discussions:- Derive bending equation, Assignment Help, Ask Question on Derive bending equation, Get Answer, Expert's Help, Derive bending equation Discussions

Write discussion on Derive bending equation
Your posts are moderated
Related Questions
Determine the angular-velocity of uniform bar: A uniform bar of length l and mass M is hinged at its end B and is released from its horizontal position BA. Determine its angul

Write an essay on air, water and soil-based heat pumps. Discuss the advantages and the disadvantages of each system. For each system identify the conditions under which that system

Matter, Particle and Weight: Sol: Matter: Matter is anything which occupies space and have some mass, offers resistance to any stress, for example Iron, stone, air, Water.

Seismometer : this is a transducer in which signal is proportional to the displacement. Accelerometer : This is a transducer in which signals is proportional to the a

use of productin drawing in manufacturing technolagy

1. store energy 2. apply force on a body 3. balance force between two bodies 4. absorb vibrations of body


Objectives After studying this section, you should be capable to understand: Cell aspects of scheduling, Conventional priority rules, Newer approaches to on line

Strength of spot welding Because spot welding has generally replaced riveting in many applications, it is reasonable to compare these two processes for strength. Often, riveted

Q. How can we use Cereals? Foundry cereal is finely ground corn flour or corn starch. It (0.25-2%) increases the green and dry strengths of the moulding sand. Since the cereal