Defining strictly local automata, Theory of Computation

One of the first issues to resolve, when exploring any mechanism for defining languages is the question of how to go about constructing instances of the mechanism which define particular, given languages. Towards that end, note that a strictly 2-local automaton can require a particular symbol to appear at the beginning or end of the string and it can permit particular pairs of symbols to occur in the interior of the string but, in general, it can't require an arbitrary pair of symbols to occur in the interior of the string. Consider, for example the language:

639_De?ning Strictly Local Automata.png

This is just the set of all strings over {a, b} in which the sequence ‘ab' occurs at least once. Since the string aabaa is in L1, any strictly 2-local automaton will have to include at least the pairs:

fia, aa, ab, ba, afi.

But then the string aaaaa will also be accepted, using just the first two and the last one of these pairs. Roughly, as long as we have to permit other pairs starting with ‘a' we cannot require ‘ab' to occur.

Posted Date: 3/21/2013 5:51:00 AM | Location : United States







Related Discussions:- Defining strictly local automata, Assignment Help, Ask Question on Defining strictly local automata, Get Answer, Expert's Help, Defining strictly local automata Discussions

Write discussion on Defining strictly local automata
Your posts are moderated
Related Questions
Computations are deliberate for processing information. Computability theory was discovered in the 1930s, and extended in the 1950s and 1960s. Its basic ideas have become part of

We have now de?ned classes of k-local languages for all k ≥ 2. Together, these classes form the Strictly Local Languages in general. De?nition (Strictly Local Languages) A langu

De?nition Deterministic Finite State Automaton: For any state set Q and alphabet Σ, both ?nite, a ?nite state automaton (FSA) over Q and Σ is a ?ve-tuple (Q,Σ, T, q 0 , F), w

The Universality Problem is the dual of the emptiness problem: is L(A) = Σ∗? It can be solved by minor variations of any one of the algorithms for Emptiness or (with a little le

Question 2 (10 pt): In this question we look at an extension to DFAs. A composable-reset DFA (CR-DFA) is a five-tuple, (Q,S,d,q0,F) where: – Q is the set of states, – S is the alph

what problems are tackled under numerical integration

Theorem The class of ?nite languages is a proper subclass of SL. Note that the class of ?nite languages is closed under union and concatenation but SL is not closed under either. N

Let G be a graph with n > 2 vertices with (n2 - 3n + 4)/2 edges. Prove that G is connected.

As de?ned the powerset construction builds a DFA with many states that can never be reached from Q′ 0 . Since they cannot be reached from Q′ 0 there is no path from Q′ 0 to a sta

The SL 2 languages are speci?ed with a set of 2-factors in Σ 2 (plus some factors in {?}Σ and some factors in Σ{?} distinguishing symbols that may occur at the beginning and en