Cryptography, computer science, Basic Computer Science

Question 1

Consider the one-time pad encryption scheme to encrypt a 1-bit message m,
and assume m is chosen with uniform distribution from message space M={0,1}.
Let E1 be the event "message m is = 1" and let E2 be the event
"ciphertext c is = 0". What is the probability that both event E1 and
event E2 happen?

Answer

a.0
b.0.5
c.0.25
d.1


Question 2

Consider the one-time pad encryption scheme to encrypt a 1-bit message m,
and assume m is chosen with uniform distribution from message space M={0,1}.
For b=0,1, let E[b] be the event "message m is = b" and let F be the event
"ciphertext c is = 1". What is the probability that event F happens?


Answer

a.0
b.0.5
c.0.25
d.1

Question 3

Consider the one-time pad encryption scheme to encrypt a 1-bit message m.
For b=0,1, let E[b] be the event "message m is = b", assume
prob(E[0])=p and prob(E[1])=1-p, for some p in [0,1],
and let F be the event "ciphertext C is = 1".
What is the probability of event E[0] given that event F happens?
Use the Bayes theorem to find your answer.

Answer

a.1
b.0.5
c.1-p
d.p

Question 4

Assume a meaningful plaintext is encrypted using the shift cipher.
How many encryption attempts are sufficient for an exhaustive (or brute-force)
search attack to find the plaintext with probability at least 1/2?

Answer

a.1
b.2
c.13
d.26

Question 5

Assume a meaningful plaintext is encrypted using the mono-alphabetic substitution cipher. How many encryption attempts are sufficient for an exhaustive (or brute-force)
search attack to find the plaintext (with probability 1)?

Answer

a.1
b.2
c.26
d.26!

Question 6

Assume a meaningful plaintext is encrypted using the poly-alphabetic substitution
cipher (with t random numbers in [0,26], for a known t).
How many encryption attempts are sufficient for an exhaustive (or brute-force)
search attack to find the plaintext (with probability 1)?

Answer


a.1
b.t
c.26
d.26 to the t-th power


Question 7

Which of these statements summarizes an equivalent form of the perfect secrecy notion?

Answer

a.The probability of the ciphertext conditioned by one plaintext is the same as the probability of the ciphertext conditioned by another plaintext
b. Knowledge of the plaintext does not affect the probability of the ciphertext
c.The probability that an adversary, after returning two plaintexts, guesses from a ciphertext c which of these two plaintexts was encrypted as c is 1/2
d.All of the above


Question 8

Which of these are valid properties of the one time pad?

Answer

a. satisfies perfect secrecy
b. the length of the key is equal to the length of the message
c.encryption and decryption are very efficient
d.all of the above

Question 9

Let L1, L2 be languages and let X,Y be either P or NP.
Consider the statement: if L1 is polynomial-time reducible to L2,
and L2 is in X, then L1 is in Y. Which of the following holds:

Answer

a.When X=P and Y=P, then the statement is true
b.When X=P and Y=NP, then the statement is true
c.When X=NP and Y=NP, then the statement is true
d. all of the above

Question 10

In an encryption scheme, let Enc denote the encryption algorithm,
Dec denote the decryption algorithm, and A denote the adversary''s algorithm.
Furthermore, let e(n), d(n), denote the running times of algorithms
Enc, Dec, respectively, and let
a(n) denote the minimum running time that an attacker takes to break any such scheme,
where n is the security parameter.
When designing this scheme following the principles
of modern cryptography, which of these relationships would you use to choose
your algorithms?


Answer

a. e(n),d(n),a(n)=O(n^c) for some constant c
b. e(n)=O(n^c) and d(n),a(n)=Omega(2^{cn}) for some constant c
c. e(n),d(n)=O(n^c) and a(n)=Omega(2^{cn}) for some constant c
d. e(n),d(n),a(n)=Omega(2^{cn}) for some constant c

Question 11

For which X,Y in {o, O, Theta, Omega, omega}, do the relationships (log n)^2 = X(n^{1/2}) and n^2 = Y(2^n) hold?


Answer

a.X=o, Y=o
b.X=O, Y=Theta
c.X=o, Y=Theta
d.X=Theta, Y=O

Question 12

For which X,Y in {o, O, Theta, Omega, omega}, do the relationships t(n)+t''(n) = X(max(t(n),t''(n)))
and t(n)+t''(n) = Y(min(t(n),t''(n))) hold for all t,t'' such that t(n),t''(n)>0 ?

Answer

a.X=Theta, Y=Theta
b.X=Theta, Y=Omega
c.X=Omega, Y=Theta
d.X=omega, Y=Theta


Question 13

Informally, BPP is the class of languages that can be decided by a probabilistic algorithm in polynomial time with an error probability of at most 1=3 on any instance. More formally, a language L is in BPP if there exists a probabilistic algorithm A (i.e., an algorithm that is allowed to use a polynomial-length string of random bits) that runs in polynomial time and satisfies the following: if x is in L then A(x) returns 1 with probability at least 2/3; if x is not in L then A(x) returns 1 with probability at most 1/3. By performing independent repetitions of algorithm A and taking the majority output, one can amplify the (2/3; 1/3) gap to (1 - 2^k; 2^k), which is extremely close to (1,0). BPP seems to well capture the class of problems that can be efficiently computed
by a computer today. It is known that P is in BPP, and while it is conjectured that P = BPP, this is actually unknown. It is also unknown whether BPP is in NP. Consider the following statements:
1) if L1 is polynomial-time reducible to L2, and L2 is in P, then L1 is in BPP;
2) if L1 is polynomial-time reducible to L2, and L2 is in BPP, then L1 is in NP.
They are, respectively:

Answer

a.true, unknown
b.unknown, unknown
c.unknown, false
d.true, false



Question 14

Assume you want to construct a public-key cryptosystem using the principles of modern cryptography, and you are
allowed to choose a language L such that your cryptosystem can be proved secure assuming that deciding L is
hard; from which of the following complexity classes would you pick L?

Answer

a.P
b.BPP
c.NP minus P
d.NP minus BPP

Question 15

Consider the one time pad encryption scheme to encrypt a 1-bit message.
Replace the XOR operation with another operation X. For which X does the
resulting scheme satisfy perfect secrecy? (Recall: OR(a,b)=1 if and only if
at least one of a,b=1; AND(a,b)=1 if and only if both a,b=1;
NOT(a)=1 if and only if a=0.)

Answer

a.X = AND
b.X = OR
c.X = NOT(XOR)
d.none of the above
Posted Date: 2/13/2012 1:10:42 AM | Location : United States







Related Discussions:- Cryptography, computer science, Assignment Help, Ask Question on Cryptography, computer science, Get Answer, Expert's Help, Cryptography, computer science Discussions

Write discussion on Cryptography, computer science
Your posts are moderated
Related Questions
Hello, Could you create a linux calculator using very basic java code (not complex, because I am a novice java coder). It should be called into the terminal for interaction. Thank

Opening files 0FH function is used to open an FCB file the 21H interruption. The element, the name and extension of the file must be initialized previous to opening it. The DX regi

whats the out put of int main(){ int n=310; funcone(n); functwo(&n); cout return 0; } void funcone(intn) n=240; } void func two(intn*) { n=120; }

Need of artificial intelligence: Artificial Intelligence may be seen as just the latest tool in the philosopher's toolbox for answering these all questions about the behavior o

To find the minimum number of shelves in the loading process in cars

Our instructor gave us a project in making a mechanical game or simple device using assembly language, can anyone give me a an example of a project description for our proposal?

Greedy Search-artificial intelligence: If we have a heuristic function for states, as defined above, then we may simply measure each state with respect to this measure an

Another way of classifying a computer system is based upon its size and capabilities: Microcomputers: Microcomputers are systems based on the use of microprocessors. A Micr

1. (40 points) Add a course drop method to the system that you implemented in Problem Set 1. Modularize your new implementation properly. For any new methods that you introduce: 1.

Internal Structure of Agents We have looked at agents in conditions of their outside influences and behaviors: they take effort from the atmosphere and do lucid actions to chan