Continuity equation - zero electric field, Electrical Engineering

Continuity Equation:

Explain continuity equation and discus the special case of continuity equation when concentration is independent of time and with zero electric field.                           

                                                      Or

Explain carrier of life time and continuity equation with required figured.

(b) If a P-type semiconductor bar has width and thickness of 3 mm each, the measured value of current and Hall voltage are 20µA and 100mV respectively.  The Resistivity of the bar is 2 × 105?-cm and the applied magnetic field is 0.1 Wb/m2. Calculate the mobility of holes.

Sol. (a) The continuity equation states a condition of dynamic equilibrium for the density of mobile carriers in any elementary volume of the semiconductor. We know that no distributing the equilibrium concentrations of holes or electrons vary with time approaching the equilibrium value exponentially. In general, the carrier concentration in the body of a semiconductor is a function of both time and distance. The differential equation governing this functional relationship is called continuity equation.  This equation is based on the fact that charge can neither be created nor destroyed. Consider an infinitesimal element of volume of area A and length dx as shown in fig. Let p be the average hole concentration within this volume. Considering the problem dimensional, let the hole current Ip is only a function of X. As shown in fig., the current entering the volume at x+ dx is Ip+time t while at the same Ip time, the current leaving the volume at x+ dx is Ip + dlp. Thus more current leaves the volume for positive value of dlp.  Thus more current leaves the volume for a positive value of dlp. Hence within the volume, the decrease in the number of holes per second with in the volume is dlp/e, where e is the magnitude of charge so the decrease in hole concentration (holes per unit volume) per second due to current Ip is given by. The increase of holes per unit volume per second due to thermal generation g = p. while the decrease of holes per unit time per second due to recombination is P. hence the increase in holes per unit volume per second must be equal to the algebraic sum of the increase in hole concentration.

Posted Date: 2/8/2013 2:39:44 AM | Location : United States







Related Discussions:- Continuity equation - zero electric field, Assignment Help, Ask Question on Continuity equation - zero electric field, Get Answer, Expert's Help, Continuity equation - zero electric field Discussions

Write discussion on Continuity equation - zero electric field
Your posts are moderated
Related Questions
Question 1: a) Describe how pipelining can improves the efficiency of the fetch-execute cycle. b) Explain the term superscalar architecture. c) Explain the term prin

Properties of a good heat sink For maximum efficiency, a heat sink should be 1)Be in good thermal contact with the transistor case 2)Have the largest surface area 3)Be

One battery having of four cells, connected in series. Emf of each cell is 1.45V and internal resistance of 0.04Ω. if a load resistance of 5Ω is connected to the battery, draw the

Determine the form factor and peak factor: Determine the form factor and peak factor for the above half rectified wave. Solution From the above example, I rms   =

Give an industrial look at modern CAM/CAD. Define explicit, implicit and parametric representations. What are the basic advantages of parametric representations over the impli

Use Norton Theorem, find the current flow through resistor R=10Ω.

HOLD Input This  signal (When  goes high ) indicates that  other device ( such as DMA Controller) is requesting the  use of  address and data buses. DMA controller is  explaine

Write a program to count how many from your data set called MYDATA, which is a set of signed single-byte numbers, has positive value and are odd numbers. Save the result in POSOD

what is that mean and explain

Q. A three-phase balanced load draws 100 kW at 0.8 power factor lagging. In order to improve the supply power factor to 0.95 leading, a synchronous motor drawing 50 kWis connected