Construction - unijunction transistor, Electrical Engineering

Assignment Help:

Construction - UniJunction Transistor:

Construction: The basic structure of uni junction transistor is shown in fig. (a). It essentially consists of a lightly doped N type silicon bar with a small piece of heavily doped P type material alloyed to its one side to produce single P N junction, the single P L junction accounts for the terminology uni junction. The silicon bar, at its ends, has two ohmic contacts designated as base 1 (B1) and base 2 (B2), as shown and the P V; region is termed the emitter (E). The emitter junction is usually located closer to base 2 (B2) than base 1 (B1) so that the device is not symmetrical, because symmetrical units does not provide optimum electrical characteristics for most of the applications. The symbol for uni junction transistor is shown in fig. (b). the emitter leg is drawn at an angle to the vertical line representing the n type material slab and the arrowhead points in the direction of conventional current when the device is forward biased, active or in the conduction state. The basic arrangement for the UJT is shown in fig. (c). The worth noting points about UJT are given below :

1.  The device has only one junction, so it is called the uni junction device.

2.  The device, because of one P N junction, is quite similar to a diode but it differs from an ordinary diode that it has three terminals.

3.  The structure of UJT is quite similar to that of an N channel JFET. The main difference is that P type material surrounds the N type material in case of JFET and the gate surface of the JFET is much larger than emitter junction of UJT.

4. In a uni junction transistor the emitter is heavily doped while the N region is lightly doped, so the resistance between the base terminals is relatively high typically 4 to 10 k when the emitter is open.

5. The N type silicon bar has a high resistance and the resistance between emitter and base 1 is larger than that between emitter and base 2. It is because emitter is closer to base 2 than base 1.

6. UJT is operated with emitter junction forward biased while the JFET is normally operated with the gate junction reverse biased.

7. UJT does not have ability to amplify but it has the ability to control a large ac power with a small signal.

8. It exhibits a negative resistance characteristic and so it can be employed as an oscillator.


Related Discussions:- Construction - unijunction transistor

Lki load register pair immediate instruction , LKI  Load Register pair  ...

LKI  Load Register pair  Immediate  Instruction This instruction is used to copy or  load  16 bit  data specified  in the  instruction  directly into  the register pair. The i

Explain multimedia extensions technology, Explain MMX Technology. Mult...

Explain MMX Technology. Multimedia extensions technology adds 57 newly instructions to the instruction set of the Pentium - 4 microprocessors. The Multimedia extensions techno

Emf, discuss the factor affecting the emf induced in electric machines

discuss the factor affecting the emf induced in electric machines

Third generation 1964 -1982 - history of computer , Third Generation ( 196...

Third Generation ( 1964- 1982 ) Invention of  technology  of integrated circuits created computers  of third  generation. In  several  logical  gates  are fabricated on a singl

Matlab simulation, Simulate and compare BER of QPSK system and 4-QAM system...

Simulate and compare BER of QPSK system and 4-QAM system without grey coding Eb/No=0.2.4.6.8.10

Characteristics of common source amplifier, Characteristics of Common Sou...

Characteristics of Common Source Amplifier At low frequencies and by using a simplified hybrid-pi model, the following small-signal characteristics can be derived.

Convert these numbers to their decimal values, Q. Consider the three BCD nu...

Q. Consider the three BCD numbers listed below. 0001 1000 0101 1000 0010 0001 0011 1000 0100 0011 0101 0101 a) Convert these numbers to their decimal values. b) Conv

Electric circuits, How to design a single phase distribution circuit from a...

How to design a single phase distribution circuit from a supply point to a load?

Determine the value of voltage using offset diode model, Use the offset dio...

Use the offset diode model with a threshold voltage of 0.6 V to determine the value of v 1 for which the diode D will first conduct in the circuit of Figure(a).

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd