Construction - unijunction transistor, Electrical Engineering

Construction - UniJunction Transistor:

Construction: The basic structure of uni junction transistor is shown in fig. (a). It essentially consists of a lightly doped N type silicon bar with a small piece of heavily doped P type material alloyed to its one side to produce single P N junction, the single P L junction accounts for the terminology uni junction. The silicon bar, at its ends, has two ohmic contacts designated as base 1 (B1) and base 2 (B2), as shown and the P V; region is termed the emitter (E). The emitter junction is usually located closer to base 2 (B2) than base 1 (B1) so that the device is not symmetrical, because symmetrical units does not provide optimum electrical characteristics for most of the applications. The symbol for uni junction transistor is shown in fig. (b). the emitter leg is drawn at an angle to the vertical line representing the n type material slab and the arrowhead points in the direction of conventional current when the device is forward biased, active or in the conduction state. The basic arrangement for the UJT is shown in fig. (c). The worth noting points about UJT are given below :

1.  The device has only one junction, so it is called the uni junction device.

2.  The device, because of one P N junction, is quite similar to a diode but it differs from an ordinary diode that it has three terminals.

3.  The structure of UJT is quite similar to that of an N channel JFET. The main difference is that P type material surrounds the N type material in case of JFET and the gate surface of the JFET is much larger than emitter junction of UJT.

4. In a uni junction transistor the emitter is heavily doped while the N region is lightly doped, so the resistance between the base terminals is relatively high typically 4 to 10 k when the emitter is open.

5. The N type silicon bar has a high resistance and the resistance between emitter and base 1 is larger than that between emitter and base 2. It is because emitter is closer to base 2 than base 1.

6. UJT is operated with emitter junction forward biased while the JFET is normally operated with the gate junction reverse biased.

7. UJT does not have ability to amplify but it has the ability to control a large ac power with a small signal.

8. It exhibits a negative resistance characteristic and so it can be employed as an oscillator.

Posted Date: 2/8/2013 2:53:52 AM | Location : United States

Related Discussions:- Construction - unijunction transistor, Assignment Help, Ask Question on Construction - unijunction transistor, Get Answer, Expert's Help, Construction - unijunction transistor Discussions

Write discussion on Construction - unijunction transistor
Your posts are moderated
Related Questions
A 9.1V zener diode has a nominal voltage fall at a test current of 28mA. The internal resistance of the zener diode is 5 ohms. Find the voltage drop across the zener diode at zener

hello i have MATLAB 2013 how can i send and receive files using Bluetooth

Q. What do you mean by Transconductance? The  control that the gate voltage has over the drain current is measured by transconductance and is similar to the transconductance of

Explain the NEG instruction. NEG: Two's complement or arithmetic sign inversion (NEG). The NEG instruction two's complements a number that means that the arithmetic sign of a

hot and cold lime soda process

GIS application architecture: GIS application architecture should 1  Give a framework and the essential programming interfaces to enable complex GIS applications to be deve

Explain the terms dielectric constant and dielectric loss. Dielectric Constant or Permittivity: all insulating materials possess an electrical capacitance. The capacitance of

How the interrupts can be masked/unmasked in 8086? The 8086 interrupt priorities are concerned; software interrupts have the highest priority, followed by NMI followed by INTR.

Q. Explain Current and Magnetic Force? The rate ofmovement of net positive charge per unit of time through a cross section of a conductor is known as current, i(t) = dq / dt