Closure properties to prove regularity, Theory of Computation

The fact that regular languages are closed under Boolean operations simpli?es the process of establishing regularity of languages; in essence we can augment the regular operations with intersection and complement (as well as any other operations we can show preserve regularity). All one need do to prove a language is regular, then, is to show how to construct it from "obviously" regular languages using any of these operations. (A little care is needed about what constitutes "obvious". The safest thing to do is to take the language back all the way to ∅, {ε}, and the singleton languages of unit strings.)

Posted Date: 3/21/2013 1:27:16 AM | Location : United States







Related Discussions:- Closure properties to prove regularity, Assignment Help, Ask Question on Closure properties to prove regularity, Get Answer, Expert's Help, Closure properties to prove regularity Discussions

Write discussion on Closure properties to prove regularity
Your posts are moderated
Related Questions
what are composition and its function of gastric juice

Rubber shortnote

The path function δ : Q × Σ* → P(Q) is the extension of δ to strings: This just says that the path labeled ε from any given state q goes only to q itself (or rather never l

A problem is said to be unsolvable if no algorithm can solve it. The problem is said to be undecidable if it is a decision problem and no algorithm can decide it. It should be note

Automaton (NFA) (with ε-transitions) is a 5-tuple: (Q,Σ, δ, q 0 , F i where Q, Σ, q 0 and F are as in a DFA and T ⊆ Q × Q × (Σ ∪ {ε}). We must also modify the de?nitions of th

Differentiate between DFA and NFA. Convert the following Regular Expression into DFA. (0+1)*(01*+10*)*(0+1)*. Also write a regular grammar for this DFA.

The upper string r ∈ Q+ is the sequence of states visited by the automaton as it scans the lower string w ∈ Σ*. We will refer to this string over Q as the run of A on w. The automa



a) Let n be the pumping lemma constant. Then if L is regular, PL implies that s can be decomposed into xyz, |y| > 0, |xy| ≤n, such that xy i z is in L for all i ≥0. Since the le