Closure properties to prove regularity, Theory of Computation

The fact that regular languages are closed under Boolean operations simpli?es the process of establishing regularity of languages; in essence we can augment the regular operations with intersection and complement (as well as any other operations we can show preserve regularity). All one need do to prove a language is regular, then, is to show how to construct it from "obviously" regular languages using any of these operations. (A little care is needed about what constitutes "obvious". The safest thing to do is to take the language back all the way to ∅, {ε}, and the singleton languages of unit strings.)

Posted Date: 3/21/2013 1:27:16 AM | Location : United States







Related Discussions:- Closure properties to prove regularity, Assignment Help, Ask Question on Closure properties to prove regularity, Get Answer, Expert's Help, Closure properties to prove regularity Discussions

Write discussion on Closure properties to prove regularity
Your posts are moderated
Related Questions
Lemma 1 A string w ∈ Σ* is accepted by an LTk automaton iff w is the concatenation of the symbols labeling the edges of a path through the LTk transition graph of A from h?, ∅i to

Define the following concept with an example: a.    Ambiguity in CFG b.    Push-Down Automata c.    Turing Machine


You are required to design a system that controls the speed of a fan's rotation. The speed at which the fan rotates is determined by the ambient temperature, i.e. as the temperatur

Prove that Language is non regular TRailing count={aa ba aaaa abaa baaa bbaa aaaaaa aabaaa abaaaa..... 1) Pumping Lemma 2)Myhill nerode

how to prove he extended transition function is derived from part 2 and 3

design an automata for strings having exactly four 1''s

Suppose A = (Σ, T) is an SL 2 automaton. Sketch an algorithm for recognizing L(A) by, in essence, implementing the automaton. Your algorithm should work with the particular automa

The Equivalence Problem is the question of whether two languages are equal (in the sense of being the same set of strings). An instance is a pair of ?nite speci?cations of regular

The computation of an SL 2 automaton A = ( Σ, T) on a string w is the maximal sequence of IDs in which each sequential pair of IDs is related by |- A and which starts with the in