Closure properties of recognizable languages, Theory of Computation

We got the class LT by taking the class SL and closing it under Boolean operations. We have observed that LT ⊆ Recog, so certainly any Boolean combination of LT languages will also be recognizable. But what about the class of recognizable languages as a whole? Are Boolean combinations of recognizable (not just LT) languages also recognizable. In answering we can use the same methodology we use to show that any language is recognizable: consider what we need to keep track of in scanning a string in order to determine if it belongs to the language or not and then use that information to build our state set.

Suppose, then, that L = L1 ∩ L2, where L1 and L2 are both recognizable. A string w will be in L iff it is in both L1 and L2. Since they are recognizable there exist DFAs A1 and A2 for which L1 = L(A1) and L2 = L(A2). We can tell if the string is in L1 or L2 simply by keeping track of the state of the corresponding automaton. We can tell if it is in both by keeping track of both states simultaneously.

Posted Date: 3/21/2013 3:06:13 AM | Location : United States







Related Discussions:- Closure properties of recognizable languages, Assignment Help, Ask Question on Closure properties of recognizable languages, Get Answer, Expert's Help, Closure properties of recognizable languages Discussions

Write discussion on Closure properties of recognizable languages
Your posts are moderated
Related Questions
As we are primarily concerned with questions of what is and what is not computable relative to some particular model of computation, we will usually base our explorations of langua

Automata and Compiler (1) [25 marks] Let N be the last two digits of your student number. Design a finite automaton that accepts the language of strings that end with the last f

Suppose G = (N, Σ, P, S) is a reduced grammar (we can certainly reduce G if we haven't already). Our algorithm is as follows: 1. Define maxrhs(G) to be the maximum length of the

design a tuning machine for penidrome

#Your company has 25 licenses for a computer program, but you discover that it has been copied onto 80 computers. You informed your supervisor, but he/she is not willing to take an

How useful is production function in production planning?

The Emptiness Problem is the problem of deciding if a given regular language is empty (= ∅). Theorem 4 (Emptiness) The Emptiness Problem for Regular Languages is decidable. P

It is not hard to see that ε-transitions do not add to the accepting power of the model. The underlying idea is that whenever an ID (q, σ  v) directly computes another (p, v) via

design an automata for strings having exactly four 1''s