Class of recognizable languages, Theory of Computation

Proof (sketch): Suppose L1 and L2 are recognizable. Then there are DFAs A1 = (Q,Σ, T1, q0, F1) and A2 = (P,Σ, T2, p0, F2) such that L1 = L(A1) and L2 = L(A2). We construct A′ such that L(A′ ) = L1 ∩ L2. The idea is to have A′ run A1 and A2 in parallel-keeping track of the state of both machines. It will accept a string, then, iff both machines reach an accepting state on that string.

Let A′ = (Q × P,Σ, T′ , (q0, p0), F1 × F2), where

T′ def= [{((q, pi, (q′, p′), σ) | (q, q′, σi)∈ T1 and (p, p′, σ ∈ T2}.

2294_Class of recognizable languages.png

Then

(You should prove this; it is an easy induction on the structure of w.) It follows then that

751_Class of recognizable languages1.png

Posted Date: 3/21/2013 3:13:26 AM | Location : United States







Related Discussions:- Class of recognizable languages, Assignment Help, Ask Question on Class of recognizable languages, Get Answer, Expert's Help, Class of recognizable languages Discussions

Write discussion on Class of recognizable languages
Your posts are moderated
Related Questions

We now add an additional degree of non-determinism and allow transitions that can be taken independent of the input-ε-transitions. Here whenever the automaton is in state 1

Exercise Show, using Suffix Substitution Closure, that L 3 . L 3 ∈ SL 2 . Explain how it can be the case that L 3 . L 3 ∈ SL 2 , while L 3 . L 3 ⊆ L + 3 and L + 3 ∈ SL

Ask question #hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhMinimum 100 words accepted#


This close relationship between the SL2 languages and the recognizable languages lets us use some of what we know about SL 2 to discover properties of the recognizable languages.

Another way of interpreting a strictly local automaton is as a generator: a mechanism for building strings which is restricted to building all and only the automaton as an inexh

We have now de?ned classes of k-local languages for all k ≥ 2. Together, these classes form the Strictly Local Languages in general. De?nition (Strictly Local Languages) A langu

s-> AACD A-> aAb/e C->aC/a D-> aDa/bDb/e

A context free grammar G = (N, Σ, P, S)  is in binary form if for all productions A we have |α| ≤ 2. In addition we say that G is in Chomsky Normaml Form (CNF) if it is in bi