Carry out a perspective projection, Computer Graphics

Consider the line segment AB in 3-Dimentional parallel to the z-axis along with end points A (- 5,4,2) and also B (5,-6,18). Carry out a perspective projection upon the X=0 plane; here the eye is placed at (10, 0,10).

Solution: Suppose here that P (x, y, z) be any point in the space.

The parametric equation of a line beginning from E and passing via P is: E + t. (P - E), o < t < 1.

= (10,0,10) + t. [(x, y, z) - (10, 0, 10)]

= (10, 0,10) + t [(x - 10)], y (z - 10)]

= (t. (x - 10) + 10, t. y, t (z - 10) + 10)

Suppose a point P' can be obtained, as t = t*

∴P' = (x', y', z') = (t* (x - 10) + 10, t*.y, t*. (z - 10) + 10)

 Because the point P' lies on x = 0 plane as:

1898_Carry out a perspective projection 1.png

          Figure: (j)

= t* (x - 10) + 10 = 0

= t* =(- 10)/ (x - 10)

= P' = (x',y',z') = (0,((-10.y)/(x - 10)),(((-10)(z - 10))/(x - 10)), + 10)

(0, ((-10.y)/(x - 10)),((10x - 10z)/(x - 10)))

In terms of Homogeneous coordinate system;

P' = (x', y', z', 1) = ( 0, ((-y )/((x - 10) - 1)) ,  (x -z)/((x/10) - 1)), 1)

= (0, -y, x-z, ((x/10) - 1))

In Matrix form there is:

2067_Carry out a perspective projection 2.png

-------------------------(1)

In above equation (1) is the needed perspective transformation, that gives a coordinates of a projected point P' (x', y', z') on the x = 0 plane, whereas a point p (x, y, z) is viewed from E (10, 0, 10)

Currently, for the specified points A (-5, 4, 2) and B (5, -6, 18), A' and B' are their projection upon the x = 0 plane.

So now from Equation (1) we get:

1289_Carry out a perspective projection 3.png

= (0,-4, -7, ((-5/10) - 1))

= (0 , -40, -70, -15)

(0, 40/15, 70/15, 1)

Thus x1' = 0;  y1' = 2.67 ;    z1' = 4.67

As the same in:

137_Carry out a perspective projection 4..png

= (0, 60, - 130, - 5)

= (0, - 12, 26, 1)

 Thus x2' = 0 ;  y2' = - 12 ;    z2' = 26

Hence the projected points A' and B' of specified points A and B are:

A' = (x1', y1'z1') = (0, 2.67, 4.67)    and     B' = (x2', y2', z2') = (0, - 12, 26, 1)

Posted Date: 4/4/2013 3:07:30 AM | Location : United States







Related Discussions:- Carry out a perspective projection, Assignment Help, Ask Question on Carry out a perspective projection, Get Answer, Expert's Help, Carry out a perspective projection Discussions

Write discussion on Carry out a perspective projection
Your posts are moderated
Related Questions
Question: a) The implications of transparency are a major influence on the design of system software. There are eight forms of transparency. Name and give a small description o

Objectives After completing this section, you must be familiar with: explain computer graphics, its characteristics and features; Conversations about applicat

Cases of the Sutherland Hodgman Polygon Clipping Algorithm In order to clip polygon edges against a window edge we move from vertex V i to the subsequent vertexV i+1 and cho

Essentialily of Computer Simulation You may want to understand why to do simulation? Is there any one way to perform the tasks? To converse these matters lets briefly discuss

What is orthographic oblique projection?  When the direction of the projection is not normal (not perpendicular) to the view plane then the projection is called as oblique proj

Rotation - 2-d and 3-d transformations Given a 2-D point P(x,y), that we want to rotate, along with respect to an arbitrary point A(h,k). Suppose P'(x'y') be the effect of ant

QUESTION (a) People want to know design patterns. i) What should their attitude be about design patterns? ii) How can people use design patterns to do a better job?

Film Recorders - graphics hardware It is a graphical output device for transferring digital images to photographic films. The easiest film recorders classically work through

Constant intensity shading OR Flat shading  In this technique particular intensity is calculated for each polygon surface that is all points that lie upon the surface of the

Filled-Area Primitives  Filled-area primitives are one of the most important types of primitives used in Computer Graphics.  Basically filled-area primitives are meant to fill