Cam-cam illustrations, Mechanical Engineering


This is a mechanical member that imparts motion to another member called follower.


A cam is rotating at regular speed of 1200 rpm in the clockwise direction. This operates a roller following of 20 mm diameter having the data given as:

Minimum diameter of the cam = 60 mm
Maximum lift = 50 mm
Angle for rise with equivalent uniform acceleration and retardation = 120o
Angle for dwell after rise = 60o
Angle for return having equal uniform acceleration and retardation = 90o

Find out maximum acceleration & maximum velocity of the follower throughout rise and return.


Maximum lift (L) = 50 mm, Angle for rise (θo) = 120o, Angle for return (θr) = 90o
The first step is to draw displacement diagram for the follower by supposing suitable scale.

(a) While follower axis passes through cam centre

(i) Draw a circle having radius equivalent to minimum radius of the cam to the scale that was decided for displacement diagram. Draw another circle having the similar centre having radius equal to (min. radius of cam + roller radius).

(ii) Show the sense of rotation & initial position of the roller.

(iii) Supposing cam stationary, follower is taken approximated it in the sense opposite to the sense of rotation of the cam. Beginning from initial location, mark angle for rise or ascent that means θo. After that mark for dwell period & then mark for return or descent angle say θr.

(iv) Divide angles θo & θr into similar number of equal pars like this is done in displacement diagram and in this case this is 8 equivalent parts. Draw radial lines.

(v) On extended radial lines transfer the equivalent displacement of the follower from displacement diagram above, the, prime circle (base circle radius + roller radius), that means 1 – 1′, 2 – 2′, etc.

(vi) Draw a series of arcs of radii equivalent to roller radius to defined roller positions from points 1′, 2′, 3′, 4′, etc.

(vii) Draw a smooth curve tangential to every arc of these to obtain the required cam profile.


Maximum velocity during rise =


 Maximum velocity during return =


  Maximum acceleration during rise =


Acceleration during return =


(b) While follower axis is eccentric to the right

(i) Draw three concentric circles having radii equivalent to eccentricity, minimum cam radius and (minimum cam radius + roller radius).
(ii) Cam is supposed stationary, mark initial location of the follower that is tangential to the eccentricity circle, that means A – O′. The follower is taken about the cam in the sense opposite to the cam rotation. The follower axis shall always remain tangential to the eccentric circle.
(iii) Join O – O′. Having this line a zero angle line, mark angle for rise θo, dwell angle & angle for return θr.
(iv) Divide angle for rise θo & angle for return θr into similar number of equivalent parts like it is done in displacement diagram & in this case this is 8 equivalent parts and gets points, 1, 2, 3 . . . 17 on the prime circle.
(v)    Draw tangents on the eccentricity circle from points 1, 2, 3, etc.
On the extended tangent lines, transfer the equivalent displacement of the follower from displacement diagram above prime circle that is 1 – 1′, 2 – 2′, etc. Repeat (e) & (f as denoted in past (a) of this instance to get the needed cam profile.


Posted Date: 12/7/2012 5:38:01 AM | Location : United States

Related Discussions:- Cam-cam illustrations, Assignment Help, Ask Question on Cam-cam illustrations, Get Answer, Expert's Help, Cam-cam illustrations Discussions

Write discussion on Cam-cam illustrations
Your posts are moderated
Related Questions

For my senoir design project, I chose a scissor lift table. My issue is finding a a roller to fit my design with .1 in od, press fit on >5 in shaft that can support 125-150 lb/sh

Q. Explain Moulding Sand for Non-ferrous Casting? The melting point of non- ferrous metal is much lower than that of ferrous metals. Therefore, the moulding sands for non-ferr

A biaxial rosette is shown at right. Derive equations to correct for transverse sensitivity effects for the case in which the two strain gage elements exhibit different gage factor

Grinder: Grinders are used to sharpen the cutting edges of the tools. They are basically fast rotating grinding wheels carried at one or two ends of a shaft. The grinding wheel ar

Q. Radiographic examination of welded joints? Radiographic examination (RT) of welded joints shall be performed as required by the Code. Acceptance criteria shall be in accord

Fixed Support: At such support beam end is not free to translate or rotate at the fixed end there are three reaction horizontal reaction ( R H ), a vertical reaction ( R V ), an

How can punching shear failure are characterised in bearing capacity? Punching Shear Failure This mode of failure is characterised by large deformations beneath the footing

Determine footing moment analysis for given demonstration. Ans: Assuming effective depth as d, Bending moment M at the face of column M = ((273.60 x 2.80 x (1.40 - 0

Design of a Bicycle Frame : Figure  depicts a simple bicycle frame, which is to be built of hollow aluminium tubing with outside diameter of 20 mm and wall thickness of 2 mm. The f