## Calculate the sunrise local horizon points, Physics

Assignment Help:

This problem examines the seasonal solar radiation budget at three geographical locations: the Equator, 40º North, and 80º North. NOTES: At a given geographical location, N, S, E, and W are the north, south, east and west points of the local horizon (also called "cardinal points" different from the same term applied to the precession of the equinoxes discussed in this course), O=observer on Earth, NP=celestial north pole, Z=zenith, X=location of sun at some instant, z=distance XZ to zenith, A=altitude of the sun (Π/2-z), δ=declination of sun DX, which currently varies between ±23.5º throughout the year, α=azimuth of sun; H=hour angle of sun measured from the meridian. During the day, the sun's rays strike the Earth's surface through a series of positive-valued angles A = 0o to a maximum Amax at meridian transit, and back to 0o.  The vertical component, sinA is the "effective heating force." This is also expressed as zenith distance z = 90o-A.  From spherical geometry: cosz = sinθsinδ + cosθcosδcosH. To calculate the total time that the sun is in the sky, set z = 90o (sunrise at the East horizon) to get: cosH = -tanθtanδ. Solve for H and divide by 15o per hour (the Earth rotates 15o per hour) to convert to time for the morning half of the day.  Azimuth angles α of the rising and setting Sun are calculated from the formula: cosα = sinδ/cosθ.

For the summer and winter solstices, and spring (or fall) equinox of each location:

(A) Calculate the sunrise and sunset local horizon points (+α) in degrees from due North (note: west = negative, east=positive).

(B) Calculate the length of the day in hours, minutes, seconds.

(C) Using the solar constant So=1370 W/m2, calculate the 'effective heating force' that reaches the top of the atmosphere per hour; plot these amounts on a graph of W/m2 vs. hour of the day. What is the summer/winter ratio of total daily insolation at each location? How does the total daily insolation at summer solstice compare among the three locations?

#### Explain youngs double slit experiment, In case of Young's double slit exper...

In case of Young's double slit experiment if the yellow light is moved by red light then how the fringes are affected?

#### Thin films, .In order to deposit films of the alloy YBa2Cu3, the metals Y, ...

.In order to deposit films of the alloy YBa2Cu3, the metals Y, Ba, and Cu are evaporated from three point sources. The latter are situated at the corners of an equilateral triangle

#### SOLID STAte, operation symmetry

operation symmetry

#### Explain about the number of modes in the optical fibres, Explain about the ...

Explain about the number of modes in the optical fibres. Mode in the optical fibres: A mode is a path occupied by a ray of light through an optical fibre. This is a mathemat

#### Why in inelastic collisions angle of momentum is conserved?, Mass of the sy...

Mass of the system is same. since, p=mv momentum remains same

#### State huygen''s principle, Q. State Huygen's principle. Huygen's princ...

Q. State Huygen's principle. Huygen's principle: (a) Every point on a specified wave front may be considered as a source of secondary wavelets which spread out with the sp

#### What are the sources of dispersion in optical fibers, What are the sources ...

What are the sources of dispersion in optical fibers? Sources of Dispersion into Optical fibers: The key sources of dispersion of pulses within optical fibers can be catego

#### Evaluate the skier''s height h, A water skier lets go of the tow rope upon ...

A water skier lets go of the tow rope upon leaving the end oaf jump ramp at a speed of 14.0 m/s. The skier has a speed of 13.0m/s at the highest point of the jump. Ignoring air res

#### Range of photometer, what is the measuring range of a photometer?

what is the measuring range of a photometer?  