Calculate the probable wall thickness of the tank, Mechanical Engineering

The background for the oil storage tank failure is as follows: the tank involved was a four million gallon circular tank that was built in 1940 for Ashland Oil Company in Cleveland, Ohio. Beginning in 1940, the tank was operated for many years in what was believed to have been heated oil service. It is unclear as to how many years the tank was not used, but in 1986 it was disassembled by cutting it apart into sections. Using oxy-acetylene torches the "old welds" were left in place as the tank was cut apart and the sections were moved to an Ashland Oil facility near Pittsburgh, Pennsylvania. Using shielded metal arc welding, the tank was reassembled in 1987 and placed in a tank farm with many other similar tanks near the Monongahela River. When reassembled, the tank joints were x-rayed and leak tested. Test results indicated that none of the welds required rework. The reassembled tank was 50 feet high and approximately 130 feet in diameter. A dike was built around the tank that would hold 150 percent of the tank capacity.

The tank was partially filled with diesel fuel in August 1987. On January 2, 1988, during its initial filling to capacity after reconstruction, the tank failed catastrophically creating a tidal wave of oil that sent nearly 4,000,000 gallons of diesel fuel into the Monongahela River causing a major environmental problem. The problem was so severe that the entire water supply for all of South Pittsburgh had to be shutdown for two weeks. In addition to spilling thousands of gallons of oil in the river, the tidal wave of oil from the tank damaged other nearby tanks and structures as well. "A small, uncemented cinderblock shed about 120 feet distant had its walls literally swept away... leaving its roof lying neatly on the slab floor. "

Answer the following questions:

1.  Decide what material composition was most likely used for the tank wall, document the properties of the material and then decide the most likely processing history for the manufacture and construction of the storage tank.  Discuss these issues as the initial paragraph(s) of your report.

2.  Calculate the probable wall thickness of the tank.

3.  If a 3/8" thick plate was used, calculate the exact flaw size that caused the brittle failure of the tank.

4.  Use your calculations as a basis for a one or two paragraph discussion of the tank failure. 

5.  By calculation and design assumptions, determine if any of the following materials could be used for this tank, given the (improbable) assumption that all manufacturing and joining problems are solvable for the particular material.

PMMA 2024-T4

Aluminum Ti-6AL-4V

Aluminum Oxide Glass

Posted Date: 3/21/2013 1:48:53 AM | Location : United States







Related Discussions:- Calculate the probable wall thickness of the tank, Assignment Help, Ask Question on Calculate the probable wall thickness of the tank, Get Answer, Expert's Help, Calculate the probable wall thickness of the tank Discussions

Write discussion on Calculate the probable wall thickness of the tank
Your posts are moderated
Related Questions
Determine the moment of forces: The side of a square ABCD is 1.60 m long .Four forces equal to 6, 5, 4 and 8 N acts respectively along with the line CB, BA, DA, DB. Determine


we have to design crane we did already with calculation remaining is process planning

Corollaries of first law of thermodynamics: First law of thermodynamics has significant corollaries. Cor ollary 1: (First Law for process). There exists property of

Q. Mechanical Design Calculations? The Mechanical Design Engineer/Specialist shall be responsible for mechanical design calculations that are required to ensure that the end pr

Constant Mesh Type Gear Box : Most of the gearboxes on motorcycles are "constant mesh". That means all the gears are constantly meshed with one another and are always spinnin

Step s Involved for Method of Section: The different steps involved are stated below: (1) First find out support reaction by using equilibrium conditions. (2) The truss

SHIELDING GAS The primary function of the shielding gas is to exclude the atmospheric air from the arc zone. However, the shielding gas has significant influence on the arc cha

Q.What is Metal working processes? Metal working processes are processes used to produce wrought products. These product include angles, channels, I-beams, round, squar

Polyhedra and Euler's Formula The b-rep of a polyhedra that are holomorphic to a sphere are topologically valid if they satisfy the following equations : F - E + V - L = 2 (