The Null Hypothesis - H0: There is no heteroscedasticity i.e. β_{1} = 0
The Alternative Hypothesis - H1: There is heteroscedasticity i.e. β_{1} 0
Reject H0 if Q = ESS/2 >
Regression Analysis: gt versus totexp, age, nk
The regression equation is
gt = 1.19 - 0.00208 totexp + 0.00002 age + 0.0111 nk
Predictor Coef SE Coef T P VIF
Constant 1.1860 0.2229 5.32 0.000
totexp -0.0020802 0.0009279 -2.24 0.025 1.045
age 0.000015 0.005019 0.00 0.998 1.038
nk 0.01105 0.07775 0.14 0.887 1.007
S = 1.46342 R-Sq = 0.3% R-Sq(adj) = 0.1%
Analysis of Variance
Source DF SS MS F P
Regression 3 11.167 3.722 1.74 0.157
Residual Error 1498 3208.095 2.142
Lack of Fit 644 1373.116 2.132 0.99 0.540
Pure Error 854 1834.980 2.149
Total 1501 3219.262
MTB > let k3=11.167/2
MTB > print k3
Data Display
K3 5.58350
Inverse Cumulative Distribution Function
Chi-Square with 3 DF
P( X <= x ) x
0.95 7.81473
MTB > InvCDF .95;
Since Q = 5.58350 < 7.81 = , there is sufficient evidence to accept H0 which suggests that there is no heteroscedasticity from the Breusch-Pagan test at 5% significance level which means that one or more slopes are zero.