Basic electromagnetic principles, Electrical Engineering


It has been known for a thousand years or more (originating in China) that certain (magnetic) materials would always orientate    themselves in a  particular direction if suspended to rotate freely. The very earliest experiments in magnetism were done with these materials (permanent magnets)  and  these  clearly  showed  that two pieces of these materials were able to exert some force at a distance. This force is analogous to gravitational force. We know from our own experience that it exists. Physicists theorise on the causes whilst engineers are more concerned with being able to measure the practical effect and put it to use by devising a suitable method of analysis.

Very early experiments by Oersted and Ampere showed that a current carrying conductor also had an effect on magnetic material    in    its  vicinity.   Magnetic compasses   placed    near    to    a    current carrying conductor were deflected. He also found that the direction of deflection depended on the position relative to the wire. Those above the wire were deflected in the opposite direction to  those placed below. Ampere quantified the strength of this force in terms of the current and the distance involved.
 

In    order  to  be    able   to  relate   these observations to analysis, the concept of a magnetic field was introduced.The presence of a magnetic field may be visualised  by  drawing   imaginary continuous  lines  of    'magnetic  flux',  the density of which is a measure of the strength of the field  in a given material. Arrows are added to the flux lines to indicate the direction of the magnetic field, from which the  direction  of the  force  it produces on, for example, compass needles and current carrying conductors can be deduced. Convention has it that the magnetic field strength is denoted by the symbol H  (ampere.turns),  whilst magnetic  flux density  is  given  the symbol B (Webers/m2).

Posted Date: 8/22/2012 3:48:56 AM | Location : United States







Related Discussions:- Basic electromagnetic principles, Assignment Help, Ask Question on Basic electromagnetic principles, Get Answer, Expert's Help, Basic electromagnetic principles Discussions

Write discussion on Basic electromagnetic principles
Your posts are moderated
Related Questions
Using the coefficients obtained for the noisy signal and the FIR filter in Q1(c)(i) implement on the TMS320VC5510DSK. You can use and modify any of the files provided in the Board

1. The photon fluence rate is 10 7 photons mm -2 sec -1 for a beam of γ rays. One fourth of the photons have energies of 100 keV, one half have energies of 80 keV and the remain

This is at the heart of the analysis of electromagnetics. It is based on a series of experiments conducted by the French scientist Ampere (1775 - 1836), in which the force between

Data rates in PSTNs: A voice channel in a PSTN is band limited with a nominal bandwidth of 3.1 kHz. A first-cut estimate of this can be attained from Nyquist's theorem that app

Q. An elementary two-pole rotating machine with uniform air gap, as shown in Figure, has a stator-winding self-inductance Lss of 50 mH, a rotor-winding self-inductance Lrr of 50 mH

Reverse Recovery Characteristics At the end of forward  conduction in diode  reverse current  flows for  a short  time. The  device  doesn't  attain its full blocking  capabili

Name the switching schemes used in a digital exchange


Q. A 75-kVA transformer has an iron loss of 1 kW and a full-load copper loss of 1 kW. If the transformer operates on the following load cycle, determine the all-day efficiency:

Managing Change: 1 The prominent actors included in the change procedure in an organisation are Change Makers, Change Agents, Change Leaders and they play a strategic role in