Basic electromagnetic principles, Electrical Engineering


It has been known for a thousand years or more (originating in China) that certain (magnetic) materials would always orientate    themselves in a  particular direction if suspended to rotate freely. The very earliest experiments in magnetism were done with these materials (permanent magnets)  and  these  clearly  showed  that two pieces of these materials were able to exert some force at a distance. This force is analogous to gravitational force. We know from our own experience that it exists. Physicists theorise on the causes whilst engineers are more concerned with being able to measure the practical effect and put it to use by devising a suitable method of analysis.

Very early experiments by Oersted and Ampere showed that a current carrying conductor also had an effect on magnetic material    in    its  vicinity.   Magnetic compasses   placed    near    to    a    current carrying conductor were deflected. He also found that the direction of deflection depended on the position relative to the wire. Those above the wire were deflected in the opposite direction to  those placed below. Ampere quantified the strength of this force in terms of the current and the distance involved.
 

In    order  to  be    able   to  relate   these observations to analysis, the concept of a magnetic field was introduced.The presence of a magnetic field may be visualised  by  drawing   imaginary continuous  lines  of    'magnetic  flux',  the density of which is a measure of the strength of the field  in a given material. Arrows are added to the flux lines to indicate the direction of the magnetic field, from which the  direction  of the  force  it produces on, for example, compass needles and current carrying conductors can be deduced. Convention has it that the magnetic field strength is denoted by the symbol H  (ampere.turns),  whilst magnetic  flux density  is  given  the symbol B (Webers/m2).

Posted Date: 8/22/2012 3:48:56 AM | Location : United States







Related Discussions:- Basic electromagnetic principles, Assignment Help, Ask Question on Basic electromagnetic principles, Get Answer, Expert's Help, Basic electromagnetic principles Discussions

Write discussion on Basic electromagnetic principles
Your posts are moderated
Related Questions
Q. Show Proper cash management? Proper cash management: cash management is a important task of finance management he has to access to various cash needs at the difference time

hot and cold lime soda process

The Lennox to Bowmanville 500 kV circuit, spanning a distance of about 180 km, has series (inductive) impedance j 0.0224 pu and shunt (capacitive) admittance j 2.34 pu, quoted on b

EI Enable Interrupts  Instruction The interrupt enable flip  flop  is set  and all the interrupts  of 8085  microprocessor are  enabled  which are  disabled  by DI  instructi

SHLD Store HL pair Direct Instruction This  instruction is used to store the contents of HL  register  pair to  memory  address specified  in the  instruction and the  next ad

Define Time and Shift Invariant? Time and shift invariant means that the system characteristics and shift do not change with time, i.e. the system output is independent of the

Q. Explain the working of LEDs OPTOELECTRONIC devices either produce light or use light in their operation. The first of these, the light-emitting diode (LED), was developed to

Q. The line-to-line voltage of a balanced wye connected three-phase source is given as 100 V. Choose V AB as the reference. (a) For the phase sequence A-B-C, sketch the phasor

Q. A synchronous motor operates continuously on the following duty cycle: 50 hp for 8 min, 100 hp for 8 min, 150 hp for 10 min, 120 hp for 20 min, and no load for 14min. Specify th

Q. A silicon diode is forward-biased with V = 0.5 V at a temperature of 293 K. If the diode current is 10 mA, calculate the saturation current of the diode.