Area under curve, C/C++ Programming

Write a program to find the area under the curve y = f(x) between x = a and x = b, integrate y = f(x) between the limits of a and b.
Posted Date: 8/31/2012 12:25:43 AM | Location : United States





#include
float start_point, /* GLOBAL VARIABLES */
end_point,
total_area;
int numtraps;
main( )
{
void input(void);
float find_area(float a,float b,int n); /* prototype */
print("AREA UNDER A CURVE");
input( );
total_area = find_area(start_point, end_point, numtraps);
printf("TOTAL AREA = %f", total_area);
}
void input(void)
{
printf("\n Enter lower limit:");
scanf("%f", &start_point);
printf("Enter upper limit:");
scanf("%f", &end_point);
printf("Enter number of trapezoids:");
scanf("%d", &numtraps);
}
float find_area(float a, float b, int n)
{
floatbase, lower, h1, h2; /* LOCAL VARIABLES */float function_x(float x); /* prototype */float trap_area(float h1,float h2,floatbase);/*prototype*/base = (b-1)/n;
lower = a;
for(lower =a; lower <= b-base; lower = lower + base)
{
h1 = function_x(lower);
h1 = function_x(lower + base);
total_area += trap_area(h1, h2, base);
}
return(total_area);
float trap_area(float height_1,float height_2,floatbase)
{
float area; /* LOCAL VARIABLE */
area = 0.5 * (height_1 + height_2) * base;
return(area);
}
float function_x(float x)
{
/* F(X) = X * X + 1 */return(x*x + 1);
}

Output
AREA UNDER A CURVE
Enter lower limit: 0
Enter upper limit: 3
Enter number of trapezoids: 30
TOTAL AREA = 12.005000
AREA UNDER A CURVE
Enter lower limit: 0
Enter upper limit: 3
Enter number of trapezoids: 100
TOTAL AREA = 12.000438

Solution in java ::

// hackerx sasi kamaraj college of engineering and technology 2910007 java Program


//The answer to be precise... although the type was a double, it rounds off the answer. Any help would be //appreciated...
//java code: 1. :: try this or the another one below this one
//Program code ::

public class Reimann
{
private static double integral(String s, double[] descriptors, double lb, double ub)
{

double area = 0; // Area of the rectangle
double sumOfArea = 0; // Sum of the area of the rectangles
double oldSumOfArea = 0;
double width = ub - lb;
boolean firstPass = true;

while ( (Math.abs((oldSumOfArea - sumOfArea) / sumOfArea) > .0001) || firstPass )
{

System.out.println((Math.abs((oldSumOfArea - sumOfArea) / sumOfArea) > .0001) || firstPass);
if (s.equals("poly"))
{
for (int i = 1; i <= ((ub - lb) / width); i++) // represents # of rectangles
{
for (int j = 0; j < descriptors.length; j++) // Goes through all the coefficients
{
area = width * descriptors[j] * Math.pow ( (double)( (i * width + lb + (i -1.0) * width + lb) / 2.0 ), j);
/*Above code computes area of each rectangle */

sumOfArea += area;

}
}
}
width = width / 2;
firstPass = false;
oldSumOfArea = sumOfArea;
}
return sumOfArea;
}

/*private static void runMyTests()
{
assert ( integral() <= 48.00001 ) && ( integral() >= 47.99999 );
}*/

public static void main (String [] args)
{

double lb = Double.parseDouble(args[args.length -2]);
double ub = Double.parseDouble(args[args.length -1]);

double[] coefficients = new double[args.length - 3];

if (args[0].equals("poly"))
{
for (int i = 1; i < args.length - 2; i++)
{
coefficients[i-1] = Double.parseDouble(args[i]);
}

System.out.println(integral("poly", coefficients, lb, ub));
}
}
}



Java Program 2 ::

public class Riemann
{
private static double integral(String s, double[] descriptors, double lb, double ub)
{

double area = 0; // Area of the rectangle
double sumOfArea = 0; // Sum of the area of the rectangles
double oldSumOfArea = 0;
double width = ub - lb;
boolean firstPass = true;

while ( (Math.abs((oldSumOfArea - sumOfArea) / sumOfArea) > .0001) || firstPass )
{

System.out.println((Math.abs((oldSumOfArea - sumOfArea) / sumOfArea) > .0001) || firstPass);
if (s.equals("poly")) // Statement for polynomial
{
for (int i = 1; i <= ((ub - lb) / width); i++) // represents # of rectangles
{
for (int j = 0; j < descriptors.length; j++) // Goes through all the coefficients
{
area = width * descriptors[j] * Math.pow ( (double)( (i * width + lb + (i -1.0) * width + lb) / 2.0 ), j);
/*Above code computes area of each rectangle */

sumOfArea += area;

}
}
}

else if (s.equals("sin")) // Statement for sin
{
for (int i = 1; i <= ((ub - lb) / width); i++) // represents # of rectangles
{
for (int j = 0; j < descriptors.length; j++) // Goes through all the coefficients
{
area = width * descriptors[j] * Math.sin(Math.toRadians(( (double)( (i * width + lb + (i -1.0) * width + lb) / 2.0 ))));
/*Above code computes area of each rectangle */

sumOfArea += area;

}
}
}

else if (s.equals("cos")) // Statement for cos
{
for (int i = 1; i <= ((ub - lb) / width); i++) // represents # of rectangles
{
for (int j = 0; j < descriptors.length; j++) // Goes through all the coefficients
{
area = width * descriptors[j] * Math.cos(Math.toRadians(( (double)( (i * width + lb + (i -1.0) * width + lb) / 2.0 ))));
/*Above code computes area of each rectangle */

sumOfArea += area;

}
}
}

width = width / 2;
firstPass = false;
oldSumOfArea = sumOfArea;
}

return sumOfArea;
}

/*private static void runMyTests()
{
assert ( integral() <= 48.00001 ) && ( integral() >= 47.99999 );
}*/

public static void main (String [] args)
{
double lb = Double.parseDouble(args[args.length -2]);
double ub = Double.parseDouble(args[args.length -1]);

double[] coefficients = new double[args.length - 3];

if (args[0].equals("poly"))
{
for (int i = 1; i < args.length - 2; i++)
{
coefficients[i-1] = Double.parseDouble(args[i]);
}

System.out.println(integral("poly", coefficients, lb, ub));
}

else if (args[0].equals("sin"))
{
for (int i = 1; i < args.length - 2; i++)
{
coefficients[i-1] = Double.parseDouble(args[i]);
}

System.out.println(integral("sin", coefficients, lb, ub));
}

else if (args[0].equals("cos"))
{
for (int i = 1; i < args.length - 2; i++)
{
coefficients[i-1] = Double.parseDouble(args[i]);
}

System.out.println(integral("cos", coefficients, lb, ub));
}
}
}



Question ::
Area Under Curve
Posted by diana | Posted Date: 9/4/2012 4:20:01 AM
#include
float start_point, /* GLOBAL VARIABLES */
end_point,
total_area;
int numtraps;
main( )
{
void input(void);
float find_area(float a,float b,int n); /* prototype */
print("AREA UNDER A CURVE");
input( );
total_area = find_area(start_point, end_point, numtraps);
printf("TOTAL AREA = %f", total_area);
}
void input(void)
{
printf("\n Enter lower limit:");
scanf("%f", &start_point);
printf("Enter upper limit:");
scanf("%f", &end_point);
printf("Enter number of trapezoids:");
scanf("%d", &numtraps);
}
float find_area(float a, float b, int n)
{
floatbase, lower, h1, h2; /* LOCAL VARIABLES */float function_x(float x); /* prototype */float trap_area(float h1,float h2,floatbase);/*prototype*/base = (b-1)/n;
lower = a;
for(lower =a; lower <= b-base; lower = lower + base)
{
h1 = function_x(lower);
h1 = function_x(lower + base);
total_area += trap_area(h1, h2, base);
}
return(total_area);
float trap_area(float height_1,float height_2,floatbase)
{
float area; /* LOCAL VARIABLE */
area = 0.5 * (height_1 + height_2) * base;
return(area);
}
float function_x(float x)
{
/* F(X) = X * X + 1 */return(x*x + 1);
}

Output
AREA UNDER A CURVE
Enter lower limit: 0
Enter upper limit: 3
Enter number of trapezoids: 30
TOTAL AREA = 12.005000
AREA UNDER A CURVE
Enter lower limit: 0
Enter upper limit: 3
Enter number of trapezoids: 100
TOTAL AREA = 12.000438

Solution in java ::

// hackerx sasi kamaraj college of engineering and technology 2910007 java Program


//The answer to be precise... although the type was a double, it rounds off the answer. Any help would be //appreciated...
//java code: 1. :: try this or the another one below this one
//Program code ::

public class Reimann
{
private static double integral(String s, double[] descriptors, double lb, double ub)
{

double area = 0; // Area of the rectangle
double sumOfArea = 0; // Sum of the area of the rectangles
double oldSumOfArea = 0;
double width = ub - lb;
boolean firstPass = true;

while ( (Math.abs((oldSumOfArea - sumOfArea) / sumOfArea) > .0001) || firstPass )
{

System.out.println((Math.abs((oldSumOfArea - sumOfArea) / sumOfArea) > .0001) || firstPass);
if (s.equals("poly"))
{
for (int i = 1; i <= ((ub - lb) / width); i++) // represents # of rectangles
{
for (int j = 0; j < descriptors.length; j++) // Goes through all the coefficients
{
area = width * descriptors[j] * Math.pow ( (double)( (i * width + lb + (i -1.0) * width + lb) / 2.0 ), j);
/*Above code computes area of each rectangle */

sumOfArea += area;

}
}
}
width = width / 2;
firstPass = false;
oldSumOfArea = sumOfArea;
}
return sumOfArea;
}

/*private static void runMyTests()
{
assert ( integral() <= 48.00001 ) && ( integral() >= 47.99999 );
}*/

public static void main (String [] args)
{

double lb = Double.parseDouble(args[args.length -2]);
double ub = Double.parseDouble(args[args.length -1]);

double[] coefficients = new double[args.length - 3];

if (args[0].equals("poly"))
{
for (int i = 1; i < args.length - 2; i++)
{
coefficients[i-1] = Double.parseDouble(args[i]);
}

System.out.println(integral("poly", coefficients, lb, ub));
}
}
}



Java Program 2 ::

public class Riemann
{
private static double integral(String s, double[] descriptors, double lb, double ub)
{

double area = 0; // Area of the rectangle
double sumOfArea = 0; // Sum of the area of the rectangles
double oldSumOfArea = 0;
double width = ub - lb;
boolean firstPass = true;

while ( (Math.abs((oldSumOfArea - sumOfArea) / sumOfArea) > .0001) || firstPass )
{

System.out.println((Math.abs((oldSumOfArea - sumOfArea) / sumOfArea) > .0001) || firstPass);
if (s.equals("poly")) // Statement for polynomial
{
for (int i = 1; i <= ((ub - lb) / width); i++) // represents # of rectangles
{
for (int j = 0; j < descriptors.length; j++) // Goes through all the coefficients
{
area = width * descriptors[j] * Math.pow ( (double)( (i * width + lb + (i -1.0) * width + lb) / 2.0 ), j);
/*Above code computes area of each rectangle */

sumOfArea += area;

}
}
}

else if (s.equals("sin")) // Statement for sin
{
for (int i = 1; i <= ((ub - lb) / width); i++) // represents # of rectangles
{
for (int j = 0; j < descriptors.length; j++) // Goes through all the coefficients
{
area = width * descriptors[j] * Math.sin(Math.toRadians(( (double)( (i * width + lb + (i -1.0) * width + lb) / 2.0 ))));
/*Above code computes area of each rectangle */

sumOfArea += area;

}
}
}

else if (s.equals("cos")) // Statement for cos
{
for (int i = 1; i <= ((ub - lb) / width); i++) // represents # of rectangles
{
for (int j = 0; j < descriptors.length; j++) // Goes through all the coefficients
{
area = width * descriptors[j] * Math.cos(Math.toRadians(( (double)( (i * width + lb + (i -1.0) * width + lb) / 2.0 ))));
/*Above code computes area of each rectangle */

sumOfArea += area;

}
}
}

width = width / 2;
firstPass = false;
oldSumOfArea = sumOfArea;
}

return sumOfArea;
}

/*private static void runMyTests()
{
assert ( integral() <= 48.00001 ) && ( integral() >= 47.99999 );
}*/

public static void main (String [] args)
{
double lb = Double.parseDouble(args[args.length -2]);
double ub = Double.parseDouble(args[args.length -1]);

double[] coefficients = new double[args.length - 3];

if (args[0].equals("poly"))
{
for (int i = 1; i < args.length - 2; i++)
{
coefficients[i-1] = Double.parseDouble(args[i]);
}

System.out.println(integral("poly", coefficients, lb, ub));
}

else if (args[0].equals("sin"))
{
for (int i = 1; i < args.length - 2; i++)
{
coefficients[i-1] = Double.parseDouble(args[i]);
}

System.out.println(integral("sin", coefficients, lb, ub));
}

else if (args[0].equals("cos"))
{
for (int i = 1; i < args.length - 2; i++)
{
coefficients[i-1] = Double.parseDouble(args[i]);
}

System.out.println(integral("cos", coefficients, lb, ub));
}
}
}



Question ::
Area Under Curve
Posted by diana | Posted Date: 9/4/2012 4:20:21 AM


Related Discussions:- Area under curve, Assignment Help, Ask Question on Area under curve, Get Answer, Expert's Help, Area under curve Discussions

Write discussion on Area under curve
Your posts are moderated
Related Questions
Shell sort - C Program: Write a program to define shell sort. void main() {                  //program for sorting by select sort int a[20],i,k,j,n;   clrscr();

b) The static keyword let a variable to maintain its value among distinct function calls. If the value of a static variable alters while the variable has been accessed, variable

Can any constructor throw an exception? How to handle error while the constructor fails?

#include stdio.h> #include conio.h> #include string.h> void main() {           int i=0,j=0,k=0,l=0;           int a[3][3],temp[3][3];           clrscr();

you are to create a text adventure game that uses pointers. You have a rich, eccentric Uncle Billy who is soon to be deceased. How soon.....oops......he''s gone. He has left yo

Define the Data Type Qualifiers in c Language? 1. const 2. volatile const: The const qualifier is used to tell C that the variable value can't change after initialization.

Friend function in c++: class miles; class km  {    float value;    public :   // void input();     km convert(km  ,int a ) ;    void output()    {

Program of swapping two varibales: void swap(int *, int *);   // This is swap's prototype int main() {                 int x = 5, y = 7;                 swap(&x, &

how made a flow chart of prime number by using for loop

Luminous Jewels - The Polishing Game Byteland county is very famous for luminous jewels. Luminous jewels are used in making beautiful necklaces. A necklace consists of various lum