Applying the pumping lemma, Theory of Computation

Applying the pumping lemma is not fundamentally di?erent than applying (general) su?x substitution closure or the non-counting property. The pumping lemma is a little more complicated-rather than just the single universal quanti?er ("for all languages L") and single existential quanti?er ("there exists n"), we have a nest of alternating quanti?ers (denoting "for all" as ∀ and "there exists" as ∃):

(∀L)[L regular ⇒


(∀x)[x ∈ L and |x| ≥ n ⇒

(∃u, v,w)[x = uvw and

|uv| ≤ n and

|v| ≥ 1 and

(∀i ≥ 0)[uviw ∈ L]]]]].

Just as with the lemmas for the local languages, we will approach this as an adversary game. Our proof will consist of a strategy for showing that L fails to satisfy the pumping lemma. Our choices are the "for all"s; the "there exists"s are our adversary's choices. There are just a few more rounds in this game than there were in the lemmas for the local languages. The key things are being clear about which are our choices and which are the adversary's and making sure that our strategy accounts for every legal choice the adversary
might make.

The game starts with our choice of the L we wish to prove to be non regular. Our adversary then chooses some n, we choose a string x ∈ L of length at least n, etc. We win if, at the end of this process, we can choose i such that uviw ∈ L. Of course, our strategy at each step will depend on the choices our adversary has made.

What we end up with is a proof by contradiction. For instance:

To show that Lab = {ajbj| j ≥ 0} is not regular.

Posted Date: 3/21/2013 1:45:12 AM | Location : United States

Related Discussions:- Applying the pumping lemma, Assignment Help, Ask Question on Applying the pumping lemma, Get Answer, Expert's Help, Applying the pumping lemma Discussions

Write discussion on Applying the pumping lemma
Your posts are moderated
Related Questions
write short notes on decidable and solvable problem

S-->AAA|B A-->aA|B B-->epsilon

Let G be a graph with n > 2 vertices with (n2 - 3n + 4)/2 edges. Prove that G is connected.

Computer has a single FIFO queue of ?xed precision unsigned integers with the length of the queue unbounded. You can use access methods similar to those in the third model. In this

design a tuning machine for penidrome

conversion from nfa to dfa 0 | 1 ___________________ p |{q,s}|{q} *q|{r} |{q,r} r |(s) |{p} *s|null |{p}

For every regular language there is a constant n depending only on L such that, for all strings x ∈ L if |x| ≥ n then there are strings u, v and w such that 1. x = uvw, 2. |u

Automaton (NFA) (with ε-transitions) is a 5-tuple: (Q,Σ, δ, q 0 , F i where Q, Σ, q 0 and F are as in a DFA and T ⊆ Q × Q × (Σ ∪ {ε}). We must also modify the de?nitions of th

Sketch an algorithm for the universal recognition problem for SL 2 . This takes an automaton and a string and returns TRUE if the string is accepted by the automaton, FALSE otherwi