Application to the axial flow compressor, Other Engineering

APPLICATION TO THE AXIAL FLOW COMPRESSOR:

In order for the compressor to deliver a high mass airflow for a minimum effort required to drive it, it is important that all the compressor blades are operating close to their optimum angle of attack at the designed optimum rpm of the engine.

This is achieved by setting the blades onto the rotor assembly at a large enough angle so as to make allowance for the automatic reduction in angle of attack that will occur with increase in rpm.

COMPRESSOR RPM

An axial flow compressor is designed to operate at maximum speeds in the region of 8000-10,000 rpm, depending on size. At this rpm the engine will be producing a large amount of thrust and in order to vary the thrust it is necessary to vary the compressor rpm.

When the compressor is operating at speeds below its designed rpm range, the axial velocity of the airflow through the compressor will decrease which will cause an increase in the angle of attack of the compressor blades. At low rpm, such as idling, the reduced axial velocity of the airflow may cause the angle of attack of some of the blades to increase beyond their stalling angle.

A slight amount of LP blade stalling during ‘off design' conditions is to be expected and only becomes a problem if a complete row of blades stall.

COMMON CAUSES OF COMPRESSOR STALL

Compressor stall normally occurs at low rpm and can be induced by:

a disturbance of smooth airflow due to damaged or dirty blades.
b disturbance of smooth airflow caused by damaged aircraft air intake.
c high combustion chamber pressure caused by over-fuelling during engine acceleration.

STAGGER ANGLE AND END BEND

The rotor blades are of airfoil section and usually designed to give a pressure gradient along their length to ensure that the air maintains a reasonably uniform axial velocity. The higher pressure towards the tip balances out the centrifugal action of the rotor on the airstream. To obtain these conditions, it is necessary to 'twist' the blade from root to tip to give the correct angle of incidence at each point. Air flowing through a compressor creates two boundary layers of slow to stagnant air on the inner and outer walls. In order to compensate for the slow air in the boundary layer a localised increase in blade camber both at the blade tip and root has been introduced. The blade extremities appear as if formed by bending over each corner, hence the term 'end-bend' Figure 4.27.

RECENT INNOVATIONS

The latest engines incorporate blades that have been designed and profiled using 3-D design techniques. This produces blades, which are curved in 3 dimensions, which are more aerodynamically efficient. 

Posted Date: 9/11/2012 9:18:20 AM | Location : United States







Related Discussions:- Application to the axial flow compressor, Assignment Help, Ask Question on Application to the axial flow compressor, Get Answer, Expert's Help, Application to the axial flow compressor Discussions

Write discussion on Application to the axial flow compressor
Your posts are moderated
Related Questions
Principles of Sprinkler Systems-Fire safety Engineering Sprinkler systems may be installed in a building to achieve a number of different objectives.  Very often the primary r

Numerical solutions to equations: Many practical problems in engineering involve complex boundary conditions and variable properties that cannot be solved analytically, creat

Bravis lattice or Bravis crystal system: The ideas of space lattice was introduced by Bravis in 1990.According to this there are 14 possible types of space lattices in the seven ba

application of schmitt trigger

Depreciation Methods Technically speaking, U.S. tax law permits deduction from taxable income of a reasonable allowance for wear or tear, natural decay or decline, exhaustion,

#question.what if i poured diesel in petrol engine and petrol in diesel engine.

Double acting feathering system: To prevent excessive drag in the event of a propeller on engine failure, the double acting propeller as with the single acting propeller requir

Derive the functional relationship between the no-arbitrage values of the two vertical spreads, C (K1)-C (K2) and C (K2)-C (K3).

how to get the deflection of a frame when a load W s acting on a corner of the frame

Constant speeding propeller: The definition of a Constant Speeding propeller is 'A propeller, the pitch setting of which varies automatically to maintain a preselected constant