Analyse the beam, Mechanical Engineering

Assignment Help:

Analyse the beam:

Analyse the beam illustrated in Figure and draw the SFD, BND & thrust diagram. Situated the point of contraflexure, if any.

1146_Analyse the beam.png

Figure

Solution

Vertical component of 4 kN at C, = 4 × cos 60o = 2 kN ( ↓ )

Horizontal component of 4 kN at C, = 4 × sin 60o = 3.464 kN ( ← )

Vertical component of 2 kN at D, = 2 × cos 30o = 1.732 kN ( ↓ )

Horizontal component of 2 kN at D, = 2 × sin 30o = 1 kN ( → )

Taking moment around A,

R B   × 8 - (3 × 10) - 2 × 4 × (4 + (4/2)) - (1.732 × 3) - (2 × 1) = 0

RB  = 10.6495 kN

RA  = 2 + 1.732 + (2 × 4) + 3 - RB  = 14.732 - 10.6495 = 4.0825 kN

Shear Force (beginning from the Left End A)

SF at A, FA  = + 4.0825 kN

SF just left of C, FC  = + 4.0825 kN

SF just right of C, FC  = + 4.0825 - 2 = + 2.0825 kN

SF just left of D, FD  = + 2.0825 kN

SF just right of D,  FD  = + 2.0825 - 1.732 = + 0.3505 kN

SF at E, FE  = + 0.3505 kN

SF just left of B, FB  = + 0.3505 - (2 × 4) = - 7.6495 kN

SF just right of B, FB  = - 7.6495 + 10.6495 = + 3 kN

SF just left of F, FF  = + 3 kN = load at the end F.

Bending Moment (beginning from the F)

BM at F,          MF   = 0

BM at B,  M B  = - (3 × 2) = - 6 kN-m

BM at E, M E  =+ (10.46 95 × 4) - (3 × 6) - ( 2 × 4 ×( 4/2))   =+ 8.599 kN-m

BM at D, BM at C,

M D  = + (4.0825 × 3) - (2 × 2) = + 8.2475 kN-m

M C  = + (4.0825 × 1) = + 4.0825 kN-m

 BM at A,        MA = 0

Maximum Bending Moment

Maximum bending moment shall occur at B and among B and E. Consider a section XX at a distance x from the end F.

Fx  = - 10.6495 + 3 + 2 ( x - 2)

For maximum bending moment, Fx must be equal to zero.

- 10.6495 + 3 + 2x - 4 = 0

x = 5.82475 m ≈ 5.825 m

BM at section XX,

∴          M x = + 10.6495 ( x - 2) - 3x - 2 ( x - 2) × (( x - 2)/2)

                   = 10.6495 ( x - 2) - 3x - ( x - 2)2

M max  = 10.6495 (5.825 - 2) - 3 (5.825) - (5.825 - 2)2

=+ 8.629 kN-m

Maximum positive bending moment = + 8.629 kN-m

Maximum negative bending moment = - 6 kN-m.

Point of Contraflexure

Equating the BM at section XX, to zero.

10.6495 ( x - 2) - 3x - ( x - 2)2  = 0

or         10.6495 x - 21.299 - 3x - x2  + 4 x - 4 = 0

or         x2  + 11.6495x - 25.299 = 0

or         x2  - 11.6495x + 25.299 = 0

Solving out by trial and error, we obtain x = 2.9 m.

Point of contraflexure is at a distance of 2.9 m from the end F.

Thrust Diagram

Horizontal reaction at A,

+ H A  + 3.464 - 1 = 0

+ H A  + 2.464 = 0

∴ H A  =- 2.464 kN

 ('-' denote that the reaction is towards right)

The portion AC is subjected to a compressive force of 2.464 kN. The part CD is subjected to a tensile force of 1 kN (that means3.464 - 2.464 = 1).


Related Discussions:- Analyse the beam

Atmospheric pressure and gauge pressure - thermodynamics, Atmospheri c Pr...

Atmospheri c Pressure (P atm ): It is pressure exerted by atmospheric air on any surface. It can be measured by a barometer. The standard values of it are; 1 P atm = 760

Estimate temperature of air at exit from compressor , Estimate temperature ...

Estimate temperature of air at exit from compressor: The air compressor compresses atmospheric air at 0.1MPa and 27 0 C 10 times the inlet pressure. During compression heat

Gravitation, What is the clear difference between gravitational potential a...

What is the clear difference between gravitational potential and gravitational potential energy ? Ans) A body A of mass m is placed in the gravitational field of a body B of mass

Orthographic projections, Orthographic Projections: As you learned pre...

Orthographic Projections: As you learned previously about the theory of projection of points, planes and lines, the next significant is the projection of solids that have thre

Explain the laws of thermodynamics, Explain the Laws of Thermodynamics ...

Explain the Laws of Thermodynamics Usually thermodynamics contains four laws; a. Zeroth law:  this law deals with thermal equilibrium and establishes an idea of temperature.

Torsion, diameter = 100mm length = 470mm power = 4000 w radians = 78 shear ...

diameter = 100mm length = 470mm power = 4000 w radians = 78 shear modulus 60000 n/mm^2 determin the maximum shear stress and angle of twist

Calculating the number of kanban card sets, Calculating the number of kanba...

Calculating the number of kanban card sets: A hospital desires to set up a Kanban system to manage its supply of blood with the regional blood bank. The regional blood bank tr

Define the analytical solid modeling, Analytical Solid Modeling (ASM) A...

Analytical Solid Modeling (ASM) ASM is closely related to finite element modeling. It is developed to aid designers in the arduous task of modeling complex geometry commonly fo

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd