A flexible manufacturing cell architecture, Mechanical Engineering

A Flexible Manufacturing Cell Architecture

An illustration object-oriented control system for a flexible manufacturing cell is represented in this section. This contained various operational limitations that are illustrated. A description of the latest system follows, along with emphasis on the enhancements acquired through the object-oriented programming approach.

The usual operational flow of a particular part in the cell may be given as:

(a) A part appears in the cell on an input conveyor and is moved in the field of observation of a visualization system.

(b) A visualization system establishes specify and location of the part.

(c) The robot changes the end effectors if necessary, and then moves the part from the conveyor to the router bed.

(d) The part is machined on the router.

(e) If scrap removal is required between machining operations, the robot intervenes, removes solid scrap, and return to the same position. The router then proceeds with remaining operations.

(f) While all router operations are complete, the robot conveys the ended part from the router bed to the output conveyor and the procedure repeats.

A latest part can enter the cell one time the preceding part has been eliminated from the input conveyor and a message has been send to turn the input conveyor back on. Because the system is organized as a tightly coupled system with no any buffers, the maximum number of parts which can reside in the cell at the similar time is three: the oldest part is either leaving the cell or on the router bed, the middle part is either being held via the robot or is on the router and a latest part is on the input conveyor.

The router is equipped along with a flexible work holding fixture which applies vacuum individually to the independent part and scrap zones under computer control. Earlier to the robot loading a part onto the router, scrap zones and the suitable part are activated. The scrap vacuum zones for the part are deactivated and the robot removes the scrap, if solid scrap removal is needed among machining passes. While all machining is finish, the element vacuum zone deactivated and the robot transfers the element from the router bed to the output conveyor.

Posted Date: 3/4/2013 7:32:06 AM | Location : United States







Related Discussions:- A flexible manufacturing cell architecture, Assignment Help, Ask Question on A flexible manufacturing cell architecture, Get Answer, Expert's Help, A flexible manufacturing cell architecture Discussions

Write discussion on A flexible manufacturing cell architecture
Your posts are moderated
Related Questions
What is the use of Spindle in Radial drilling machine    The spindle holds the drill or cutting tools and revolves in a fixed position in a sleeve.

Explain the Tool Signature The tool angles have been standardized by the American standards association. The seven important elements comprise the signature of the cutting tool

The major purpose of a wrap-a-round is to make a straight line around a pipe to aid in cutting the pipe to its proper length. It is used mainly as a template or a straight edge.

How to calculate helix angle for the purpose of designing?

Q. Illustrate about Plant Type and Process? Plant layout is influenced by the type of plant (both the industry and technology utilized) and the kind of process units and associ

Assets Markets and the LM Curve The assets markets are the markets in which money, bonds, stocks, houses and other forms of wealth are traded. There are a large variety of asse

calculation of stage wise specific steam consumption and power output

(a) Illustrate the concept of absolute thermodynamic temperature scale on the basis of second law. (b) In a Steady flow apparatus , 13.5 KJ of work is done by each kg of fluid.

how is varignons theorem useful in engineering mechanics

I require design procedure of Conjugate Cams