3-d transformation, Computer Graphics

3-D Transformation

The capability to represent or display a three-dimensional object is basically to the knowing of the shape of that object. Moreover, the capability to rotate, translate and also project views of such object is also, in various cases, basically to the understanding of its shape. Manipulation, construction and viewing of 3-dimensional graphic images need the utilization of coordinate transformations and 3-dimensional geometric. Within geometric transformation, the coordinate system is set and the desired transformation of the object is finished w.r.t. the coordinate system. During coordinate transformation, the object is fixed and the preferred transformation of the object is complete on the coordinate system itself. Such transformations are formed via composing the essential transformations of translation, rotation and scaling. All of these transformations can be demonstrated as a matrix transformation. It permits more complex transformations to be constructed by utilization of matrix concatenation or multiplication. We can make the complicated objects/pictures, via immediate transformations. In order to demonstrate all these transformations, we require utilizing homogeneous coordinates.

Thus, if P(x,y,z) be any point in 3-dimensional space then in Homogeneous coordinate system, we add a fourth-coordinate to a point. It is in place of (x,y,z), all points can be represented via a Quadruple (x,y,z,H), where H≠0; along with the condition is x1/H1=x2/H2; y1/H1=y2/H2; z1/H1=z2/H2. For two points (x1, y1, z1, H1) = (x2, y2, z2, H2) ; such that H1 ≠ 0, H2 ≠ 0. Hence any point (x,y,z) in Cartesian system can be illustrated by a four-dimensional vector like (x,y,z,1) in HCS. Similarly, if (x,y,z,H) be any point in Homogeneous coordinate system then (x/H,y/H,z/H) be the equivalent point in Cartesian system. Hence, a point in 3-dimensional space (x,y,z) can be demonstrated by a four-dimensional point as: (x',y',z',1)=(x,y,z,1).[T], here [T] is several transformation matrix and (x',y'z',1) is a new coordinate of a specified point (x,y,z,1), so after the transformation.

The completed 4x4 transformation matrix for 3-dimensional homogeneous coordinates as:

2350_3-D Transformation.png

The upper left (3x3) sub matrix generates scaling, reflection, rotation and shearing transformation. The lower left (1x3) sub-matrix generates translation and the upper right (3x1) sub-matrix produces a perspective transformation that we will study in the subsequent section. The final lower right-hand (1x1) sub-matrix generates overall scaling.

Posted Date: 4/3/2013 5:59:52 AM | Location : United States







Related Discussions:- 3-d transformation, Assignment Help, Ask Question on 3-d transformation, Get Answer, Expert's Help, 3-d transformation Discussions

Write discussion on 3-d transformation
Your posts are moderated
Related Questions
What is the difference between impact and non-impact printers?  Impact printer press produced character faces against an inked ribbon on to the paper. A line printer and dot-ma

Radiosity - Polygon Rendering & Ray Tracing Methods Radiosity simulates the diffuse propagation of light begin at the light sources. Because global illumination is an extremel

A color histogram is a representation of the distribution of colors in an image. For digital images, a color histogram represents the number of pixels that have colors in each of a

why do video game characters look better today?

Projections - Viewing Transformation Specified 3-D object in a space, Projection can be explained as a mapping of 3-D object into 2-D viewing screen. Now, 2-D screen is termed

Archeology: along with the advent of the computer, the archeologist has obtained a new tool, computer animation. An object-model can be made comparatively quick and without any we

Advantages of Scan line Algorithm:   This time and always we are working along with one-dimensional array as: x[0...x_max] for color not a 2D-array like in Z-buffer algorithm.

Multimedia Entertainment: The field of entertainment uses multimedia extensively. One of the earliest and the most popular applications of multimedia are for games. Multimedi

Beam Penetration Method and Shadow Mask Method Two methods exist for displaying colors in a CRT monitor - beam penetration method and shadow mask method. Beam penetration metho

Features for good 3-Dimentional modeling software are as: Multiple windows which permit you to view your model in each dimension. Capability to drag and drop primitive